DOI: 10.1002/chem.200701315

Switchable C- and N-Bound Isomers of Transition-Metal Cyanocarbanions: Synthesis and Interconversions of Cyclopentadienyl Ruthenium Complexes of Phenylsulfonylacetonitrile Anions

Takeshi Naota,* Akio Tannna, Shigeaki Kamuro, Masayuki Hieda, Kazuki Ogata, Shun-Ichi Murahashi, and Hikaru Takaya^[a]

Abstract: The synthesis, structure, and dynamic behavior of bistable C- and Nbound isomers of transition-metal cyanocarbanions are described. A series of C-bound cyclopentadienyl (Cp) ruthenium phosphane complexes, $[Ru{CH(CN)SO_2Ph}(Cp)L_1L_2]$ (3), and N-bound [Ru⁺ their isomers, $(Cp)(NCCH^{-}SO_{2}Ph)L_{1}L_{2}]$ (4), were prepared by treating $[RuCl(Cp)(PR_3)_2]$ with the sodium salt of phenylsulfonylacetonitrile and performing ligand-exchange reactions with the resulting compounds. Structural characterization by X-ray diffraction indicates that the cyanocarbanion moiety of 3 has an α - metalated structure, whereas that of 4 has a zwitterionic, end-on structure. Heating these complexes in aprotic solvents gives rise to irreversible linkage isomerization between *C*- and *N*-bound isomers, in which the relative thermal stabilities vary greatly depending on the steric and electronic nature of the ligands. Mechanistic studies of *N*-to-*C* isomerization revealed that the reaction proceeds irreversibly in a unimo-

Keywords: carbanions • linkage isomerization • nitriles • ruthenium • self-assembly lecular manner without the formation of coordinatively unsaturated species. A metal-sliding process, which occurs over the $-C-C\equiv N \pi$ -conjugated surface of the cyanocarbanion moiety, was suggested by results from kinetic studies and density functional theory (DFT) calculations. *C*-to-*N* isomerizations proceed by the above-mentioned intramolecular process, with a temperature-dependent contribution from the formation and cleavage of μ^2 -*C*,*N* coordination dimers [{Ru{CH(CN)SO₂Ph}(Cp)-(PPh_3)}] (**15** and **16**).

Introduction

The $C^{[1-4]}$ and *N*-bound^[5-7] coordination modes of transition-metal cyanocarbanions **1** and **2** have been extensively studied with respect to their molecular structure,^[1,2,5] their use as reagents and catalysts for C–C bond formation,^[3,4,6,8-14] and their potential use as molecular devices.^[7] Most of the complexes reported are in the *C*-bound coordination mode^[1,2] and can be prepared by ionic ligand exchange,^[1a-d,2,3] oxidative addition to acetonitrile^[1i,j] or α -halonitriles,^[1e-h] or insertion into acrylonitrile.^[1k,J] Complexes **1** are

[a] Prof. Dr. T. Naota, Dr. A. Tannna, S. Kamuro, M. Hieda, K. Ogata, Prof. Dr. S.-I. Murahashi, Dr. H. Takaya Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka Osaka 560-8531 (Japan) Fax: (+81)6-6850-6224 E-mail: naota@chem.es.osaka-u.ac.jp widely used as Grignard-type anionic reagents for selective nucleophilic addition reactions of carbonyl compounds and enones owing to their specific soft nucleophilicity.^[2] Complexes **2** can be isolated, in most cases, by using a similar synthetic methodology to *C*-bound complexes^[5–7] and also by C=N bond cleavage,^[5h] when they have strong electronwithdrawing groups at the α -position of the nitrile. The magnetic properties of *N*-bound complexes **2** with extended π conjugated systems, which are potential new motifs for functional materials, have been studied extensively.^[7]

The reactivity of complexes 1 and 2 has recently become a focus of interest for organic and organometallic chemists because these species have specific catalytic activity, with high selectivity and sustainability, for a variety of C–C

 $\ensuremath{\textcircled{}}$ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2008, 14, 2482-2498

bond-forming reactions between nitriles and electrophiles, which include carbonyl compounds,^[6a-d,g,11] imines,^[6b,12] nitriles,^[13] electron-deficient olefins,^[6b-g,11a,b,14] methylenecyclopropanes,^[8] enynes,^[9] allenes,^[10] and bromobenzenes.^[1d] Reductive elimination of **1** followed by a redox catalytic cycle has been postulated for palladium-catalyzed reactions,^[1d,8-10] whereas direct nucleophilic attack on electrophiles by **2** and a nonredox mechanism occur for aldol and Michael-type reactions.^[6,11]

Understanding these differences in the reactivities and properties of **1** and **2** would not only provide significant information about C–H activation and catalyzed C–C bond-formation in nitriles, but could also contribute to the design of molecular devices that are highly sensitive to stimuli. However, despite the high profile of both isomers in many fields of chemistry, the stability and dynamic behavior of these isomers is poorly understood relative to that of transition-metal enolates.^[15,16] This discrepancy is probably a result of the very high stability of the C–M and M–N bonds in **1** and **2**, respectively, which mainly arises from the α -functionality of the nitrile moieties.

To obtain insight into the dynamism of 1 and 2, we attempted to synthesize transition-metal cyanocarbanions with unprecedented stability for both C- and N-coordination modes. Sulfonyl groups, which are electron-withdrawing, but have less resonance effect, were introduced at the α -position of the coordinated nitrile moieties, thus enabling us to prepare both isomers in a stable form. This basic research led us to conduct a systematic study of the structure and properties of C- and N-bound transition-metal cyanocarbanions. A series of C- and N-bound cyclopentadienyl (Cp) ruthenium complexes of phenylsulfonylacetonitrile, anionic phosphane, and π -acidic ligands **3** and **4** ([Ru{CH(CN)SO₂Ph}(Cp)L₁L₂] $[Ru^+(Cp)(NCCH^-SO_2Ph)L_1L_2],$ and respectively; Scheme 1) have been isolated and characterized.^[17] Upon heating in an aprotic solvent, the complexes undergo selective linkage isomerization with no degradation of the coor-

Scheme 1. C- and N-bound RuCp cyanocarbanions 3 and 4.

dination situation. A systematic study of ligand effects revealed that the preferred direction for *C*-to-*N* interconversion is rigidly controlled by the steric and electric nature of the ligand. Controlled experiments, kinetic studies, and density functional theory (DFT) calculations revealed that 1) *C*-to-*N* and *N*-to-*C* isomerizations proceed by an intramolecular process that involves metal slippage over the $-C-C\equiv N \pi$ -conjugated surface, and 2) *C*-to-*N* isomerizations proceed by temperature-dependent participation of an intermolecular process that involves self-assembly of the metal atoms.^[18] Herein we describe the synthesis, characterization, and *C*-to-*N* interconversions of the phenylsulfonylacetonitrile carbanion of RuCp complexes.

Results and Discussion

Synthesis and characterization of *C*- and *N*-bound isomers of RuCp cyanocarbanions: A variety of *C*- and *N*-bound cyclopentadienylruthenium(II) complexes that contain the phenylsulfonylacetonitrile anion are thermally stable, and isolable through reactions of the corresponding halo complexes. Typically, when a solution of $[RuCl(Cp)(PPh_3)_2]$ (7) was treated with Na[CH(CN)SO₂Ph] in ethanol/hexane (1:1) at RT, the isomeric mixture of the corresponding *C*and *N*-bound PPh₃ complexes, $[Ru{CH(CN)SO_2Ph}(Cp) (PPh_3)_2]$ (3a) and $[Ru^+(Cp)(NCCH^-SO_2Ph)(PPh_3)_2]$ (4a), were formed in a ratio of 41:59, in which pure complex 3a was isolated by filtration of the precipitate (37%; Scheme 2). Complex 4a (89%) was isolated as the sole

Scheme 2. Synthesis of 3a and 4a.

product after similar treatment in ethanol/toluene (1:1) instead of ethanol/hexane. Treating $[Ru(tBuNC)Cl(Cp)(PPh_3)]$ (8) with Na[CH(CN)SO₂Ph] in boiling ethanol afforded the corresponding *C*-bound complex $[Ru(tBuNC){CH(CN)-SO_2Ph}(Cp)(PPh_3)]$ (3k; 77%) as a diastereomeric mixture (65:35). A isomeric mixture (44:56) of the corresponding *C*and *N*-bound isonitrile complexes was formed by the same reaction in ethanol/benzene (1:1) at RT, which gave the *N*bound isomer $[Ru^+(tBuNC)(Cp)(NCCH^-SO_2Ph)(PPh_3)]$ (4k; 18%). Similarly, the CO complexes [Ru-{CH(CN)SO₂Ph}(CO)(Cp)(PPh_3)] (3l; 45%, diastereomeric ratio d.r.=91:9) and $[Ru^+(CO)(Cp)(NCCH^-SO_2Ph)(PPh_3)]$

(41; 30%) were formed by reaction of $[RuCl(CO)(Cp)-(PPh_3)_2]$ (9) in boiling ethanol. This is the first example, to the best of our knowledge, of the preparation of *C*- and *N*-bound isomers of transition-metal cyanocarbanions. As previously reported,^[17] the second *C*- and *N*-bound isomers to be isolated were PdTp (Tp=hydrotris(pyrazolyl)borate ligand) complexes of the malononitrile anion.^[2e] In contrast with the stability of both the *C*- and *N*-bound complexes of the phenylsulfonylacetonitrile anion, alkyl cyanoacetate anions coordinate exclusively in a *N*-bound manner as a result of their strong resonance effect. Typically, treating **7** with Na[CH(CN)CO₂Et] gave [Ru⁺(Cp)(NCCHCO₂Et)-(PPh_3)₂] (**6a**) (*E*/*Z* 76:24; 70%)^[6d] as the sole product.

A series of C- and N-bound phosphane complexes can be derived from 3a and 4a by ligand-exchange reactions with various mono- and bidentate phosphanes. Reaction of 3a with PMe₂Ph, Ph₂PCH₂PPh₂ (dppm), Ph₂PCH₂CH₂PPh₂ (dppe), and Me₂PCH₂CH₂PMe₂ (dmpe) in boiling benzene gave the corresponding C-bound complexes [Ru{CH(CN)- SO_2Ph (Cp) (PMe₂Ph)₂] (3c; 99%), [Ru{CH(CN)SO_2Ph}-(Cp)(dppm)] (3e; 73%), [Ru{CH(CN)SO₂Ph}(Cp)(dppe)] (**3 f**; 73%), and [Ru(Cp){CH(CN)SO₂Ph}(dmpe)] (**3 i**; 90%). Similar treatment of 4a with PMePh₂, P(iPr)₃, dppm, Ph₂P- $(CH_2)_4PPh_2$ (dppb), Ph₂PCpFeCpPPh₂ (dppf), and $(cC_6H_{11})_2PCH_2CH_2P(cC_6H_{11})_2$ (dcype) afforded the N-bound complexes $[Ru^+(Cp)(NCCH^-SO_2Ph)(PMePh_2)_2]$ (4b; 51%), $[Ru^+(Cp)(NCCH^-SO_2Ph){P(iPr)_3}_2]$ (4d; 36%), $[Ru^+(Cp) (dppm)(NCCH^{-}SO_{2}Ph)]$ (4e; 30%), [Ru⁺(Cp)(dppb)-(NCCH⁻SO₂Ph)] (4g; 85%), [Ru⁺(Cp)(dppf)(NCCH⁻- SO_2Ph)] (4h; 51%), and $[Ru^+(Cp)(dcype)(NCCH^-SO_2Ph)]$ (**4j**; 61%).

Table 1 shows selected IR and NMR spectroscopic data for **3** and **4**. CN and SO stretching bands of *C*-bound complexes **3** appear in the range of $\tilde{\nu}$ =2189–2209 (CN), 1304– 1311 (SO, asym), and 1141–1146 cm⁻¹ (SO, sym), all of which are shifted to a lower frequency than those of phenylsulfonylacetonitrile ($\tilde{\nu}$ =2258, 1318, and 1152 cm⁻¹) as a

Table 1. Selected characterization data for ruthenium cyanocarbanions **3** and **4**.

	L_1	L_2		$IR^{[a]} [cm^{-1}]$		¹ H NMR ^[b]	^{13}C	NMR ^[b]	
				-		δ [ppm]	δ	[ppm]	
			$\tilde{\nu}(CN)$	$\tilde{\nu}_{as}(S=O)$	$\tilde{\nu}_{s}(S=O)$	CHCN	CHCN	CHCN	
3a	PPh ₃	PPh ₃	2201	1304	1141	3.96	58.0	125.9	
3b	PMePh ₂	PMePh ₂	2189	1311	1143	3.81	28.8	126.0	
3c	PMe ₂ Ph	PMe ₂ Ph	2189	1310	1142	3.18	30.0	125.4	
3e	Ph ₂ PCI	H_2PPh_2	2193	1302	1143	3.87	52.9	125.2	
3 f	Ph ₂ P(CF	$H_2)_2PPh_2$	2193	1304	1141	3.35	29.0	125.4	
3i	Me ₂ P(CF	H_2) ₂ PMe ₂	2195	1304	1144	2.88	27.7	125.5	
3k	tBuNC	PPh_3	2201	1304	1144	3.20 ^[c] /3.28 ^[d]	31.0 ^[c] /31.0 ^[d]	124.06 ^[c] /124.09 ^[d]	
31	CO	PPh_3	2209	1310	1146	3.25 ^[c] /3.43 ^[d]	32.2 ^[c] /32.1 ^[d]	123.6 ^[c] /123.6 ^[d]	
4a	PPh ₃	PPh_3	2163	1286	1124	3.90	45.9	152.7	
4e	Ph ₂ PCI	H_2PPh_2	2166	1294	1125	3.35	45.2	154.0	
4g	Ph ₂ P(CH	H_2) ₄ PPh ₂	2166	1305	1127	3.05	44.9	152.5	
4h	$Ph_2P(Cp)F$	e(Cp)PPh ₂	2166	1296	1127	4.09	45.8	152.7	
4j	$(c-C_6H_{11})_2P(CH_{11})_2P$	$H_2)_2 P(c-C_6 H_{11})_2$	2174	1292	1128	3.50	44.0	152.5	
4 k	tBuNC	PPh_3	2168	1287	1127	3.72	45.2	152.0	
41	CO	PPh ₃	2172	1296	1130	3.70	46.3	151.7	

[a] Recorded as a KBr disc. [b] Recorded in C_6D_6 . [c] Major diastereomer (R^*_{Ru}, S^*_C) . [d] Minor diastereomer (R^*_{Ru}, R^*_C) .

result of positive inductive effect of the metal moieties. Further shifts to lower frequency were observed for both CN ($\tilde{\nu}$ =2163–2174 cm⁻¹) and SO ($\tilde{\nu}_{asym}$ =1286–1305, $\tilde{\nu}_{sym}$ =1124–1130 cm⁻¹) stretching bands of a series of complexes **4**, as a result of the strong inductive and resonance effects that arise from their naked anionic structures. σ -Donating and π -acidic ligands were found to lessen the shifts to lower frequencies mentioned above; this can be clearly seen by comparing the wavenumber obtained for **4a** ($\tilde{\nu}$ =2163 cm⁻¹) with **4j**, **4k**, and **4l** ($\tilde{\nu}$ =, 2174, 2168, and 2172 cm⁻¹, respectively).

The chemical shifts of the CHCN protons in the ¹H NMR spectra are significantly altered by the nature of ligands in both C- and N-bound complexes. The doublet of doublet, CHCN proton signals of 3 in $[D_6]$ benzene appeared between $\delta = 2.88$ and 3.96 ppm in the following order: $3a > 3e > 3b \gg$ $3f > 3k > 3c \gg 3i$. Although this tendency could arise from the σ -donating properties of the ligands owing to their respective basicity ($PPh_3 > PMePh_2 > PMe_2Ph/dppe > dmpe$), the difference between the two diastereomers of $3\mathbf{k}$ ($\delta =$ 3.20 and 3.28 ppm) and the large chemical shift in 3e cannot be explained by this inward electronic effect from the metal center. All significant variation in the CHCN chemical shifts of complexes 3 can be rationalized by an outward, deshielding effect from the closest benzene ring of the ligands. The CHCN signals of N-bound complexes 4 appear as a singlet between $\delta = 3.05$ and 4.11 ppm. The size order of the chemical shifts, starting with 4b ($\delta = 4.11$ ppm), is 4b > 4a/4j > 4g, are almost reversed compared with that for 3, which suggests that the CHCN protons in 4 are affected by a remote, shielding effect from a specific benzene ring of the ligands.

The signals for the nitrile carbon (CCN) appear in the ¹³C NMR spectra between $\delta = 123.6$ and 126.0 ppm for **3** and $\delta = 151.7-154.0$ ppm for **4**. The assignments of the CCN and CCN signals were confirmed by 500 MHz HMBC and HMQC NMR spectroscopy experiments, which revealed a strong correlation between the CCN, CCN, and CHCN sig-

nals in these complexes. Figure 1 shows that the signals from the CCN atom are distributed over a wide range for 3 $(\delta = 27.7 - 58.0 \text{ ppm})$ and a narrow range for 4 ($\delta = 44.0$ – complexes 46.3 ppm); with strong σ -donating ligands tend to have signals with a higher magnetic field in both cases. These results indicate that the electronic state of CCN can be controlled by the electronic nature of the ligands. In particular, remote control of 4, three atoms distant from the CCN atom, would provide significant information about catalytic C-C bond-forming reactions between nitriles and electro-

FULL PAPER

Figure 1. a) and b) Ligand dependence of ${}^{13}C$ NMR spectroscopic chemical shifts for CCN signals ([D₆]benzene) of **3** and **4**, respectively.

philes.^{[8-14] 31}P NMR spectra showed a pair of doublet signals for two diastereomeric P nuclei in **3**, and singlet signals in **4**.

Molecular structures of *C*- and *N*-bound complexes: The structures of the complexes were confirmed by single-crystal X-ray diffraction (Figure 2a–e shows complexes 3e, 3k, 3l, 4a, and 4k, respectively). The crystallographic data for

these complexes are listed in Table 2. Table 3 summarizes selected bond lengths and angles for these complexes and a reference nitrile (2-phenylsulfonylbutane nitrile; 10). The bond lengths of the C \equiv N bonds in complexes 3 are shorter than those in 10 and increase from 3l/3k > 3e. A significant influence of the metal on the bond energies of the C=N bonds was also demonstrated by the relative positions of the C=N stretching bands $(10>3l>3k>3e; \tilde{\nu}=2233, 2209,$ 2201, 2193 cm⁻¹, respectively). The Ru(1)–C(2) distances (2.166(8)-2.174(2) Å) are in the same range as the C-M bond lengths of various C-bound acetonitrile complexes $(2.1-2.2 \text{ Å}).^{[1-3]}$ The bond angles of N(1)-C(1)-C(2) $(177.8(6)-178.8(9)^{\circ})$ and the angles around the C(2) atoms indicate that the C(2) atom has high sp³ character. These results show that complexes 3 have an almost completely α metalated nitrile structure, in which η^2 - and η^3 -coordination of the metal has an almost negligible contribution.

In **4a** and **4k**, the bond angles of Ru(1)-N(1)-C(1)(172.0(4), 168.8(10)°) and N(1)-C(1)-C(2) (175.9(5), 179(1)°) demonstrate that the cyanocarbanion moieties are linear. The bond angles of C(1)-C(2)-S(1) (122.6(4), 119.3(8)°) indicate the high sp² character of the C(2) carbons. Complexes

Figure 2. a)-e) Molecular structures of 3e, 3k, 3l, 4a, and 4k, respectively.

Chem. Eur. J. 2008, 14, 2482-2498

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 2. Crystallographic data

	$3e^{1/2}CH_3COCH_3$	3 k	$3I \cdot C_6 H_6$	4a	$4\mathbf{k}\cdot\mathbf{C}_{6}\mathbf{H}_{6}$	10	$15 \cdot C_4 H_8 O$
formula	C ₃₈ H ₃₃ NO ₂ P ₂ RuS	C ₃₆ H ₃₅ N ₂ O ₂ PRuS	C32H26NO3PRuS	$C_{49}H_{41}NO_2P_2RuS$	$C_{42}H_{41}N_2O_2PRuS$	$C_{10}H_{11}N_2S$	$C_{62}H_{52}N_2O_4S_2P_2Ru_2$
$M_{\rm w} [{ m gmol^{-1}}]$	770.78	691.79	714.78	870.95	769.90	209.26	1289.41
crystal system	orthorhombic	triclinic	triclinic	monoclinic	orthorhombic	monoclinic	monoclinic
space group	Pbca(#61)	<i>P</i> Ĩ(#2)	$P\tilde{1}(#2)$	$P2_1/n(#14)$	$P2_12_12_1(#19)$	$P2_1/a(#14)$	C2/2(#15)
a [Å]	42.40(1)	12.769(11)	12.618(4)	10.298(2)	17.95(1)	10.900(3)	17.442(4)
b [Å]	19.648(7)	13.091(10)	13.897(8)	22.889(4)	20.169(6)	8.802(5)	16.626(9)
c [Å]	17.943(8)	11.292(6)	10.595(4)	17.333(1)	10.467(5)	11.232(5)	21.903(5)
α [°]	90	98.67(6)	103.02(4)	90	90	90	90
β [°]	90	91.78(7)	108.21(2)	95.06(1)	90	91.10(3)	96.87(2)
γ [°]	90	61.87(4)	85.51(4)	90	90	90	90
V [Å ³]	14947.9(10)	1643.8(20)	1719.5(12)	4069.5(10)	3790(2)	1077.5(8)	6306(3)
Ζ	16	2	2	4	4	4	8
T [°C]	20.0	23.0	23.0	23.0	23.0	20.0	20.0
reflns. collected	17059	7883	8282	10125	4872	2614	7765
independent reflns.	17059	7542	7918	9357	4843	2480	7268
obsd. $[I > 2.0\sigma(I)]$	7293	6600	7160	5300	2561	1363	5114
$R^{[a]}[I > 2.0\sigma(I)]/all$	0.084/0.213	0.0275/0.0353	0.0600/0.0643	0.041/0.125	0.041/0.105	0.055/0.122	0.040/0.067
$wR2^{[b]}[I > 0.0\sigma(I)]$	0.2455	0.0983	0.2168	0.127	0.181	0.178	0.165
GOF	1.005	1.015	1.008	1.00	1.04	1.02	1.05

[a] $R = \frac{\sum ||F_o| - |F_c||}{\sum |F_o|}$ [b] $wR2 = \left| \frac{\sum w(|F_o|^2 - |F_c|^2)^2}{\sum w(F_o^2)^2} \right|^{1/2}$

Table 3. Selected bond distances [Å] and angles [°] for 3e, 3k, 3l, 4a, 4k, and 10.

	3e	3k	31	4a	4 k	10
N(1)-C(1)	1.148(14)	1.144(3)	1.144(6)	1.153(6)	1.15(1)	1.134(4)
C(1)-C(2)	1.459(13)	1.446(2)	1.435(5)	1.367(7)	1.38(2)	1.439(4)
C(2) - S(1)	1.795(8)	1.782(2)	1.788(3)	1.664(6)	1.68(1)	1.807(2)
S(1)-O(1)	1.429(6)	1.429(3)	1.439(3)	1.444(5)	1.454(8)	1.432(2)
S(1)-O(2)	1.448(6)	1.435(2)	1.438(3)	1.436(5)	1.437(9)	1.435(2)
Ru(1)-C(2)	2.166(8)	2.174(2)	2.169(4)	_	-	-
Ru(1)-N(1)	-	-	_	2.054(4)	2.056(9)	_
N(1)-C(1)-C(2)	178.8(9)	178.1(2)	177.8(6)	175.9(5)	179(1)	178.0(3)
C(1)-C(2)-S(1)	106.5(6)	108.2(2)	109.0(2)	122.6(4)	119.3(8)	109.3(2)
Ru(1)-C(2)-C(1)	108.7(6)	109.89(15)	111.9(3)	_	-	-
Ru(1)-C(2)-S(1)	114.0(4)	114.01(8)	111.92(17)	_	-	-
Ru(1)-N(1)-C(1)	-	_	_	172.0(4)	168.8(10)	-

4a and 4k have longer N(1)-C(1) bonds (1.153(6) and 1.15(1) Å, respectively) and shorter C(1)-C(2) bonds (1.367(7) and 1.38(2) Å, respectively) than 10. This decrease in the triple-bond character of the C=N bonds and increase in the double-bond character of C(1)-C(2) can be attributed to delocalization of the anionic charge across the C–C=N π conjugated surface of the cyanocarbanions. The ultimate resonance structure of metal cyanocarbanions, the azaallenvl M-N=C=C, is not appropriate in this case because the structure requires a Ru-N(1)-C(1) bond angle of 120° and the N(1)-C(1) and C(1)-C(2) bonds to have double-bond character, as seen in germanium complexes.^[19] These results indicate that N-bound cyanocarbanions have end-on coordination and a zwitterionic electronic state with weak delocalization of the negative charge. The slight deviation of the Ru(1)-N(1)-C(1) bond angle from 180° can be attributed to steric congestion of the ligands with a small contribution from the azaallenyl electronic state.

Charge distributions on the cyanocarbanions were estimated by using DFT calculations (B3LYP/LANL2DZ) for the *C*- and *N*-bound model complexes [Ru{CH- (2) the optimized geometries of 11
(2) and 12 (Figure 8a and c, later) showed that the C(2) and N(1)
(3) atoms of 12 are much more negatively polarized than those of 11 (11: -0.623, -0.345 12: -0.771, -0.515), whereas the Ru(1) atom of 12 is positively charged compared with 11 (11: -0.096, 12: -0.0007). These with the guarantee definition of a second second

 $(CN)SO_2Me_1(Cp)(PH_3)_2$ (11)

and $[Ru(Cp)(NCCHSO_2Me)-(PH_3)_2]$ (12). As shown in Figure 3, the natural bond orbital (NBO) atomic charges of

data are in agreement with the suggested zwitterionic electronic state of the *N*-bound complexes and clearly illustrate the significant difference in electronic state between these two species.

Interconversions between *C*- and *N*-bound cyanocarbanions: *C*- and *N*-bound complexes of transition-metal cyanocarbanions **3** and **4** undergo specific linkage isomerization upon heating in solution. Typically, complex **3a** is quantitatively converted into **4a** when heated in benzene at 60 °C, whereas

Figure 3. Selected NBO atomic charges of $11\,$ and $12\,$ at B3LYP/ LANL2DZ (cc-pVTZ for C, H, N).

FULL PAPER

4a is thermally stable. In contrast, complex **3e** is inert to thermal isomerization, but **4e** undergoes quantitative *N*-to-C isomerization under similar conditions (Scheme 3). These

Scheme 3. C-to-N interconversions of cyanocarbanion complexes.

results indicate that the relative thermal stabilities of *C*- and *N*-bound complexes can be controlled to a large extent by the phosphane ligands. A preliminary report on these new linkage isomerizations^[17] was followed by a report on a similar *N*-to-*C* isomerization in the Pd malononitrile anion [Pd-(NCCHCN)MePyTp].^[2e]

To pursue the ligand effect for the current linkage isomerization, we examined the thermal stability of a series of complexes **3** and **4** through ligand-exchange reactions with a number of mono- and bidentate tertiary phosphanes (Scheme 4). To identify phosphanes that induce thermal sta-

Scheme 4. Ligand-specific C-to-N interconversions.

bility in *N*-bound complexes, we investigated the reactions of thermally stable **3b** with phosphanes in boiling benzene. For **3b**, ligand exchange with particular phosphanes, which include PPh₃, $P(iPr)_3$, dppb, dppf, and dcype, gave rise to subsequent quantitative isomerization to afford the corresponding *N*-bound isomers, whereas similar treatment with other phosphanes afforded the corresponding *C*-bound ones. Similarly, phosphanes that favor the *C*-bound coordination mode were found to be PMePh₂, PMe₂Ph, dmpe, dppm, and dppe by the ligand-exchange reaction with thermally stable **4a**.

Apparently, the σ -donating property of phosphanes is not a major controlling factor for the thermal stability of *C*- and *N*-bound complexes given its lack of correlation with the order of basicity for monodentate phosphanes $(P(iPr)_3 > PMe_2Ph > PMePh_2 > PPh_3)$ and for bidentate phosphanes (dmpe/dcype > dppm/dppe/dppb). However, the effects of different phosphanes correlate well with their cone angle, which is a convenient index to assess the steric situation around the metal centers of phosphane complexes.^[20] As shown in Table 4, phosphanes with cone angles larger than

Table 4. Correlation between the relative stability of cyanocarbanion complexes and the cone angles of their phosphane ligands.

$L_1, L_2^{[a]}$	Cone angle ^[b] [°]	Stable structure	
dmpe	107	C (3i)	
dppm	121	$C(\mathbf{3e})$	
PMe ₂ Ph	122	$C(\mathbf{3c})$	
dppe	125	$C(\mathbf{3f})$	
PMePh ₂	136	C (3b)	
dcype	143	N (4j)	
PPh ₃	145	N(4a)	
dppb	145 ^[c]	N(4g)	
dppf	146 ^[d]	$N(\mathbf{4h})$	
$P(iPr)_3$	160	N (4d)	

[a] Abbreviations for phosphanes are as shown in Scheme 1. [b] Values are obtained from the literature unless noted otherwise.^[20] [c] Estimated value based on crystallographic data for $[RuCl_2(dppb)(PPh_3)]$.^[21] [d] Estimated value based on crystallographic data for $[Ru(Cp)(dppf)(C=CC_5H_4N\{W(CO)_4(PPh_3)\})]$.^[22]

approximately 140° stabilize the N-bound mode, whereas those with angles less than 140° favor the C-bound mode. This result shows that the relative stability of complexes 3 and 4 is mainly controlled by steric interactions between tertiary phosphanes and cyanocarbanion moieties. Such steric congestion is clearly seen in the overhead views of 3e and 4a, as shown in Figure 4a and c, respectively. Complex 3e has much less steric hindrance between the bulky phenylsulfonyl group of the cyanocarbanion and the phenyl groups of dppm because of its small cone angle (Figure 4a), whereas the phenyl groups of PPh_3 in **4a** block a considerable number of regions in the cyanocarbanion moiety (Figure 4c). In other words, the dppm complex rationally selects the Cbound structure to obtain the original stability of the C-M bonds, rather than the zwitterionic N-bound coordination mode. The stable N-bound structure of 4a is also preferred because it avoids energy loss from steric hindrance in the Cbound structure rather than gaining energy from the C-M bond.

N-bound complexes with π -acidic ligands, such as *t*BuNC (**4k**) and CO (**4l**), undergo facile *N*-to-*C* isomerization upon heating in boiling benzene to afford **3k** and **3l** with diastereoselectivities of 51:49 and 52:48, respectively (Scheme 5). The reaction of **4k**, in particular, proceeds smoothly even at temperatures below 60 °C, although all similar reactions with bis-phosphane ligands (Scheme 1) required overnight reflux in benzene. The ligand-exchange reaction of **4a** with *t*BuNC in boiling benzene also gave rise to quantitative formation of **3k** with the same diastereoselectivity. Complexes **3k** and **3l** do not undergo *C*-to-*N* isomerization upon heating in solution as a result of their thermal stability. As

Figure 4. a)-c) Overhead views of ORTEP diagrams for 3e, 3k, and 4a, respectively.

Scheme 5. Irreversible N-to-C isomerization of 4k and 4l.

*t*BuNC is a less bulky ligand (as shown in the overhead view of **3k**; Figure 4b), steric effects must be a major factor in the relative thermal stabilities of **3k** and **3l**. Electronic effects that arise from the strong π acidity of the ligands would also contribute to the decrease in activation energy for $\eta^1 - \eta^2$ transformation (conversion to side-on coordination), which is discussed later in the kinetic studies section.

Cyanocarbanion complexes that have α -CO₂R groups stabilize the zwitterionic N-bound coordination mode owing to a strong resonance effect in their NCCHCO₂R anion moieties. Typically, the N-bound bis-PPh₃ complex [Ru⁺ $(Cp)(NCCHCO_2Et)(PPh_3)_2$ (6a), which is highly stable as an enol,^[6d] is inert with respect to N-to-C isomerization upon heating with or without any additional tertiary phosphane. Despite the high stability of N-bound cyanoacetate anions, addition of π -acid ligands can force the N-bound mode to convert into the C-bound mode. Reaction of 6a with tBuNC (4 equiv) in boiling benzene afforded a quantitative yield of a diastereomeric mixture (d.r.=62:38) of the corresponding C-bound complex, [Ru{CH(CN)CO₂Et}- $(CNtBu)(Cp)(PPh_3)$] (5k), as shown in Scheme 6. Complex 5k can also be prepared selectively by treating [RuCl- $(CNtBu)(Cp)(PPh_3)$] (8) with Na[CH(CN)CO₂Et] in ethanol. Note that all linkage isomerizations mentioned in this paper are irreversible, and require a reaction temperature of approximately 60 to 80 °C. No tautomerization between two coordination modes was observed under any reaction conditions.

Mechanism of N-to-C isomerization: Kinetic studies on the conversion of $4\mathbf{k}$ to $3\mathbf{k}$ in $[D_6]$ benzene were carried out by

Scheme 6. *N*-to-*C* isomerization of stable cyanoacetate anion **6a**.

means of ¹H NMR spectroscopy with dibenzyl as an internal standard.^[18] Time dependence for the formation of 3k indicated that a diastereometric pair $((R^*_{Ru}, S^*_{C}), \mathbf{3k})$ and $(R_{Ru}^*R_{C}^*)$ -3k) was formed in a fixed ratio of 59:41 over the entire isomerization process, which shows that the process involves two independent irreversible reactions for each diastereomer. The consumption rates of 4k exhibited clear first-order dependences ($R^2 = 1.000$ in all cases) on the concentration of **4k** at 333 to 348 K ($(8.96(2) \times 10^{-6}, 1.574(7) \times$ 10^{-5} , 2.89(2)×10⁻⁵, and 4.853(4)×10⁻⁵ s⁻¹ at 333, 338, 343, and 348 K, respectively; Figure 5), which indicates that C-to-N isomerization proceeds in a unimolecular manner. The observed first-order rate constant (k_1) fits well $(R^2=0.999)$, Figure 6) with the Eyring relationship of $\ln(k_1/T)$ versus 1/T, from which the activation parameters ΔH^{\dagger} and ΔS^{\dagger} were determined to be (107 ± 2) kJ mol⁻¹ and $-(22\pm5)$ J K⁻¹ mol⁻¹, respectively.

Note that the rates of the isomerization of $4\mathbf{k}$ were not influenced by the solvent or additive used; the reaction in CDCl₃ proceeded at almost the same rate as that in [D₆]benzene (Table 5, entries 1 and 2). Addition of an excess of strong ligands, such as PPh₃, CH₃CN, or *t*BuNC, also had no effect on k_1 (Table 5, entries 3–5). Although a standard rationale for this reaction might involve the ratedetermining formation of the 16-electron cationic complex **13** followed by a fast rebound of the counter cyanocarbanion (Scheme 7). Such a dissociation mechanism can be rejected given the above-mentioned constancy and the fact that the rate-determining formation of 16-electron complexes in ligand dissociations are significantly influenced by

Figure 5. Time dependence of $-\ln ([4k]/[4k]_0)$ for the isomerization of 4k $([4k]_0=2.00\times10^{-2} M)$ to 3k in $[D_6]$ benzene at 333 (\bullet), 338 (\circ), 343 (\blacksquare), and 348 K (\Box).

Figure 6. Eyring plot for the isomerization of **4k** ($[4k]_0 = 2.00 \times 10^{-2}$ M) to **3k** in [D₆]benzene at 333–348 K. Slope = $-1.28(2) \times 10^5$, intercept = 21.1(6), $R^2 = 0.999$.

Table 5. First-order rate constants for the isomerization of 4k to 3k at 333 K.

Entry	Additive ^[a]	Solvent	$k_1 [\mathrm{s}^{-1}]$
1	_	[D ₆]benzene	$8.96(2) \times 10^{-6}$
2	-	CDCl ₃	$8.99(3) \times 10^{-6}$
3	PPh ₃	[D ₆]benzene	$8.99(3) \times 10^{-6}$
4	CH ₃ CN	[D ₆]benzene	$8.67(8) \times 10^{-6}$
5	tBuNC	[D ₆]benzene	$8.86(9) \times 10^{-6}$

[a] 4 equivalents.

the properties of solvents and external ligands.^[23] Also, selective formation of **4k** with excess *t*BuNC (Table 5, entry 5) shows that the corresponding 16-electron complex [{Ru-(*t*BuNC)(Cp)(PPh₃)}⁺] is not formed because the same intermediate with a PF_6 counterion is known to react readily with *t*BuNC to afford $[Ru(tBuNC)_2(Cp)(PPh_3)]PF_6$.^[24]

One plausible underlying mechanism for the present unimolecular reaction is a metal-sliding process, in which the metal undergoes rotation by 90° and subsequent parallel translational motion on the C–C \equiv N π -conjugated surface of the cyanocarbanion (Scheme 8). Linkage isomerization has

Scheme 8. Proposed metal-sliding mechanism during N-to-C isomerization.

been studied for a variety of transition-metal complexes of heteroatom compounds,^[25] which includes NO,^[26] NO₂,^[27] SO₂,^[28] Me₂SO,^[28a] SCN,^[28b] amides,^[29] and enolates.^[30] All previous cases involve a 1,2-^[26-28] or 1,3-shift^[28b,29,30] of the metal atom, which are reasonable movements considering the proximity of the two coordination sites on the bent ligand platforms. The mechanism proposed herein requires the metal atom to move between the considerably distant N(1) and C(2) binding sites. The most crucial step in this movement would be the initial 90° rotation, which occurs during the η^1 - η^2 transformation of the nitrile coordination mode.^[31] This step would be rate determining and could be accelerated by the steric and electric effects of the π -acidic ligands.

DFT calculations (B3LYP/LANL2DZ) for the transformation of 12 to 11 (Figure 3) were performed to gain insight into C-to-N linkage isomerization. Figure 7 shows a simple potential energy surface that was obtained with a sole optimized structure for transition state (TS) 14. Optimized structures for 11, 12, and 14 are shown in Figure 8. TS 14 has an almost complete η^2 -coordination mode as indicated by its Ru(1)-N(1)-C(1) and Ru(1)-C(1)-N(1) bond angles of 71.8 and 85.8°, respectively. Activation energy for N-to-C isomerization is estimated to be 28.3 kcalmol⁻¹, whereas that for C-to-N isomerization is $38.9 \text{ kcalmol}^{-1}$. This is consistent with experimental results, which show that less bulky phosphanes exclusively induce N-to-C isomerization (Table 4). The calculated reaction profile strongly supports the proposed mechanism that involves metal sliding (Scheme 8). Note that in this profile, the cyanocarbanion complex retains a noncovalent interaction between the Cp

proton and the sulfonyl oxygen atom during the entire isomerization process. In other words, the flexibly rotating Cp ring acts as a hinge that supports the entropically unfavorable longrange movement of the metal. The Ru(1)-N(1)-C(1) bond angle of **12** (140.0°) shows that

Scheme 7. Possible rate-determining step for the isomerization of **4k**, which involves the 16-electron complex **13**.

Chem. Eur. J. 2008, 14, 2482-2498

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 2489

FULL PAPER

Figure 7. Potential energy profile of the isomerization of **12** to **11**. The relative free energies are given in kcal mol^{-1} .

 η^1 -coordination of the cyanocarbanion ligand is significantly shifted towards an azaallenyl structure to obtain this stabilization. This is in contrast with bulky complex **4a**, which has almost complete η^1 -coordination with no hydrogen bonding (Figure 2). As shown in Scheme 8, the rate-determining step for this metal-sliding process is proposed to be an $\eta^1 - \eta^2$ transformation. Therefore, this initial bending of η^1 -coordination in **12** would make a significant contribution to decreasing the activation energy for this process, although this type of interaction would not generally be essential for *C*to-*N* linkage isomerization.^[2e]

Mechanism of C-to-N isomerization: C-to-N isomerization involves an alternative mechanism, which differs from the unimolecular pathway of N-to-C isomerization. As described herein, complex 3a quantitatively afforded 4a upon heating in boiling benzene or THF. In contrast, similar treatment of **3a** at RT in THF gave the corresponding μ^2 -C,N coordination dimer^[1d, 32] $(R*_{Ru}, S*_{C}, R*_{Ru}, S*_{C})$ -[Ru{CH(CN)-SO₂Ph}(Cp)(PPh₃)]₂ (15) as a major product. ¹H NMR spectroscopic analysis of the reaction mixture indicated that 15 was formed as a single diastereomer. Analytically pure 15 (22%) was isolated by using a reprecipitation technique and characterized by spectroscopic analyses (Scheme 9). The molecular structure of 15, which was determined by using single-crystal X-ray diffraction (Table 2, Figure 9a), shows that the bridged cyclic structure is constructed from the strongly distorted end-on coordination of weakly bent cyano groups of C-bound moieties (Figure 9b). The Ru(1)-N(1)-C(1) bond angle of 156.6(3)° represents the smallest value reported to date for μ^2 -C,N coordination dimers (157.8(3)) and 165(5)°).^[1d, 32] As expected from the distorted coordination mode, complex 15 is highly reactive with respect to ring cleavage with a variety of ligands (see Scheme 10 for examples). Treating 15 with PPh₃ and dppf in boiling benzene afforded quantitative yields of 4a and 4h, respectively. Similar treatment with PMe₂Ph gave rise to quantitative formation

Figure 8. a)–c) Optimized geometries of **12**, TS **14**, and **11**, respectively, with selected bond lengths [Å] and angles [°].

of **3c**. Heating a solution of **15** in benzene under CO (100 atm) gave an 81:19 diastereomeric mixture of **3l**.

Changes in product distribution for the *C*-to-*N* isomerization of **3a** in [D₆]benzene between 313 and 373 K were monitored periodically by means of ¹H NMR spectroscopy. At 313 K, formation of a considerable amount of coordination dimer **15** and its diastereomer (**16**) was observed from the initial stage of the reaction (Figure 10a). Complex **16** was isolated and characterized by ¹H NMR spectroscopy in [D₆]benzene. A pair of doublet CHCN signals at δ =4.18 and 4.22 ppm indicated that the stereochemistry of **16** is (R^*_{Ru} , R^*_{C} , R^*_{Ru} , S^*_{C}) or (R^*_{Ru} , R^*_{C} , S^*_{Ru} , R^*_{C}) as a result its

2490

Scheme 9. The temperature-dependent reaction of 3a.

Figure 9. a) Molecular structure of 15. b) Selected bond distances $[\text{\AA}]$ and angles $[^{\circ}]$ of 15.

Scheme 10. Ligand-specific ring-cleavage reactions of 15.

FULL PAPER

Figure 10. Reaction profiles for the isomerization of **3a** ($[3a]_0=3.00 \times 10^{-2}$ M) to **4a** in [D₆]benzene at 313 (a) and 348 K (b) as evaluated by ¹H NMR spectroscopy. \bigcirc : **3a**, \bigcirc : **4a**, **n**: **15**, \square : **16**.

asymmetrical configuration. This result is in contrast with the fact that **15** was obtained exclusively with similar treatment in THF (Scheme 9). At higher temperatures, the preferential and increasing formation of **4a** was observed with slow decay of **15** and **16** (Figure 10b). In contrast, an excess of PPh₃ completely inhibited the formation of dimer intermediates. The consumption rates of **3a** exhibit clear firstorder dependence ($R^2 = 0.994-0.999$) in the reaction of **3a** to **4a** PPh₃ (20 equiv) between 333 and 348 K (Figure 11), which indicates that an intramolecular direct process via a similar TS also exists in *C*-to-*N* isomerization. Activation parameters ΔH^{\ddagger} and ΔS^{\ddagger} were estimated to be (121±1) and (42 ± 4)J⁻¹mol⁻¹, respectively, from the linear Eyring relationship of ln (k_1/T) versus 1/*T* (R^2 =1.000, Figure 12).

The reaction profiles in Figure 10 strongly suggest the existence of an intermolecular process in the *C*-to-*N* isomerizations, and that this process contributes strongly at higher temperatures. To investigate the putative intermolecular process, kinetic studies were carried out on the cleavage of **15** with PPh₃ (40 equiv) in [D₆]benzene at 313 K. The time dependence of the concentration of **3a** and **4a** showed that both complexes were formed independently without an induction period, (Figure 13) from which the initial rate constants k_{obs} ($k_{obs} = d[\mathbf{3a}]/dt$, $d[\mathbf{4a}]/dt$) were determined to be $4.06(5) \times 10^{-8}$ and $7.00(2) \times 10^{-9} \text{ ms}^{-1}$, respectively. These k_{obs} values did not alter significantly when the reaction was car-

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 11. Time dependence of $-\ln ([3a]/[3a]_0)$ for the isomerization of $3a ([3a]_0 = 2.00 \times 10^{-2} \text{ M})$ to 4a in the presence of PPh₃ $(4.00 \times 10^{-1} \text{ M})$ in [D₆]benzene, at 333 (•), 338 (•), 343 (•), and 348 K (□).

Figure 12. Eyring plot for the isomerization of **3a** ($[3a]_0 = 2.00 \times 10^{-2}$ M) to **4a** in the presence of PPh₃ (4.00×10^{-1} M) in [D₆]benzene. Slope = $-1.45(2) \times 10^4$, intercept = 28.9(5), $R^2 = 1.000$.

ried out with different concentrations of PPh₃ (60 equiv, $k_{obs} = 4.25(3) \times 10^{-8}$ and $7.16(10) \times 10^{-9} \text{ ms}^{-1}$ for **3a** and **4a**, respectively). These results indicate that the ring-cleavage reactions of **15** to **3a** and **4a** proceed independently by the rate-determining formation of different 16-electron complexes: [Ru{CH(CN)SO₂Ph}(Cp)(PPh₃)] for **3a** and [Ru⁺ (Cp)(NCCH⁻SO₂Ph)(PPh₃)] for **4a**.

To compare the rates of the intra- and intermolecular processes under the same reaction conditions, the value of k_{obs} for the *C*-to-*N* isomerization of **3a** with excess PPh₃ was determined under the same conditions (313 K, PPh₃, (40 equiv), Figure 14). The rate-

(40 equily), Figure 14). The fatedetermining step of the intramolecular process (15 to 4a, $k_{obs} = 7.00(2) \times 10^{-9} \text{ M s}^{-1}$) was slightly faster than the intramolecular pathway (3a to 4a, $k_{obs} = d[4a]/dt = 6.67(12) \times$ 10^{-9} M s^{-1}) in the presence of excess PPh₃ (Scheme 11). As described herein, we confirmed that the rates of isomerization

of 4k to 3k (Table 5) and cleav-

Figure 13. Time dependence of the concentrations of **3a** and **4a** for the initial reaction of **15** with PPh₃ in [D₆]benzene at 313 K, $[15]_0 = 1.71 \times 10^{-3}$ M. •: [**3a**], $k_{obs} = 4.06(5) \times 10^{-8}$ Ms⁻¹, $R^2 = 0.996$ and \odot : [**4a**], $k_{obs} = 7.00(2) \times 10^{-9}$ Ms⁻¹, $R^2 = 0.976$ for [PPh₃]_0 = 6.83×10^{-2} M. •: [**3a**], $k_{obs} = 4.25(3) \times 10^{-8}$ Ms⁻¹, $R^2 = 0.998$ and \Box : [**4a**], $k_{obs} = 7.16(10) \times 10^{-9}$ Ms⁻¹, $R^2 = 0.994$ for [PPh₃]_0 = 1.06×10^{-1} M. Data were obtained in the range of 2.9 to 13.2 % conversion of **15**.

Figure 14. Time dependence of the concentration of **4a** for the initial reaction of **3a** in the presence of PPh₃ in [D₆]benzene at 313 K ([**3a**]₀ = 1.71×10^{-3} M, [PPh₃]₀ = 6.83×10^{-2} M, $k_{obs} = 6.68(12) \times 10^{-9}$ Ms⁻¹, $R^2 = 0.994$). Data were obtained in the range of 3.8 to 9.4 % conversion of **3a**.

age of 15 to 4a (Figure 13) are constant with varying concentrations of PPh₃. Based on the unimolecular reaction mechanism for the direct pathway of 3a to 4a (Figures 11 and 12), it is reasonable to suppose that the rate for this direct pathway is also independent of PPh₃ concentration,

Scheme 11. i) PPh₃ (40 equiv), $k_{obs}(313 \text{ K}) = 4.06(5) \times 10^{-8} \text{ M s}^{-1}$. ii) PPh₃ (40 equiv), $k_{obs}(313 \text{ K}) = 7.00(2) \times 10^{-9} \text{ M s}^{-1}$. iii) PPh₃ (40 equiv), $k_{obs}(313 \text{ K}) = 6.68(12) \times 10^{-9} \text{ M s}^{-1}$.

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

2492

given the postulated metal-sliding mechanism (Scheme 8). Thus we can be fairly certain that the rate for the pathway from 15 to 4a is not negligible compared with that of the direct pathway (3a to 4a), even at low concentrations of PPh₃. This conclusion implies that coordination dimers 15 and 16 are not dead-end resting states, but act as intermediates for C-to-N isomerizations.

Schematic representations of C-to-N interconversions of cyanocarbanion complexes are shown in Scheme 12. The C-

Intermolecular process (self-assembly)

Scheme 12. Schematic representations of the *C*-to-*N* interconversions of transition-metal cyanocarbanions.

to-N and N-to-C transformations proceed via the same η^2 -TS (18) in a unimolecular manner, with continuous rotational and translational motion of the metal atoms on the cyanocarbanions. Naturally, these isomerizations are postulated to proceed by $\eta^1 - \eta^2$ transformations: 17 to 18 for C-to-N, and **19** to **18** for *N*-to-*C*. The positive ΔS^{\dagger} values for the *C*-to-*N* isomerization of **3a** ((42 ± 4) JK⁻¹mol⁻¹, Figure 12) can be explained by the rate-determining transformation of 17 to 18, in which charge separation would lead to increasing randomness of the system. The negative ΔS^{\dagger} values for the Nto-*C* isomerization of 4k (-(22±5) JK⁻¹mol⁻¹, Figure 6) can be ascribed to the decreasing polarity of the zwitterionic system (19 to 18). Owing to the free cyano functionality of the C-bound complexes, the C-to-N isomerization accompanies the temperature-dependent intermolecular process, which includes the fast formation and cleavage of the corresponding μ^2 -C,N coordination dimer (20). This is quite a rare example of a molecular transformation that is driven by self-assembly of the substrates.

Conclusion

We found that cyclopentadienyl ruthenium cyanocarbanions that have α -sulfonyl groups have unprecedented stability for both the *C*- and *N*-bound forms, and we have also succeeded in preparing exact coordination isomers of transition-metal cyanocarbanions for the first time. X-ray diffraction analyses unequivocally established that cyanocarbanions have almost complete α -metalated and end-on binding modes. Switching, irreversible linkage isomerization between the *C*- and *N*-

FULL PAPER

bound isomers can be performed by heating the isomers in aprotic solvents. The direction of C-to-N interconversion, that is, the relative thermal stability of these isomers, can be controlled to a great extent by external ligands, which include mono- and bidentate phosphanes, CO, and isonitriles. Controlled experiments with regards to the reaction of thermally stable complexes 3 and 4 with various ligands revealed that the steric situation around the metal center is a major determinant of the thermal stability of these complexes. Experimental and theoretical studies on the mechanism of the C-to-N interconversions revealed that C-to-N and N-to-C isomerizations proceed by an intramolecular process and Cto-N isomerization involves a temperature-dependent intermolecular process that proceeds by the self-assembly of metal centers. N-Bound cyanocarbanions reportedly have high specific catalytic activity for aldol and Michael reactions, and the related carbon-carbon bond-forming reactions of nitriles.^[6,8–14] These results provide interesting information regarding the controlled generation of these catalysts and a mechanistic rationale for these important catalytic processes.

Experimental Section

Preparation of 3a and 4a: A solution of $[RuCl(Cp)(PPh_{3})_{2}]$ (**7**; 5.46 g, 7.50 mmol) and Na[CH(CN)SO₂Ph] (3.05 g, 15.0 mmol) in ethanol/ hexane (1:1) was stirred for 24 h at RT under an argon atmosphere. The resulting yellow precipitate was collected by filtration, washed successively with ethanol and hexane, and dried under reduced pressure to give **3a** as a yellow solid (2.41 g, 37%). Similar treatment of **7** (2.68 g, 3.70 mmol) with Na[CH(CN)SO₂Ph] (1.50 g, 7.40 mmol) in ethanol/toluene (1:1) gave **4a** (2.83 g, 89%).

3*a*: ¹H NMR (270 MHz, C₆D₆): $\delta = 3.96$ (dd, J = 8.3, 1.7 Hz, 1H; CHCN), 4.90 (s, 5H; C₃H₃), 6.90–7.12 (m, 21H; Ar*H*), 7.55–7.65 (m, 12H; Ar*H*), 7.89 ppm (dd, J = 7.5, 3.0 Hz, 2H; SO₂C₆H₅ (*ortho*)); ¹³Cl¹H] NMR (125 MHz, C₆D₆): $\delta = 143.3$ (s; SO₂C₆H₅ (*ipso*)), 137.3 (s; PC₆H₅ (*ipso*)), 135.4 (d, J = 12.4 Hz; PC₆H₅ (*ortho*)), 134.3 (d, J = 8.3 Hz; PC₆H₅ (*meta*)), 135.9 (s; PC₆H₅ (*para*)), 131.6 (s; SO₂C₆H₅ (*ortho*)), 129.6 (s; SO₂C₆H₅ (*meta*)), 128.8 (s; SO₂C₆H₅ (*para*)), 125.9 (s; CHCN), 82.9 (s; C₅H₅), 58.0 ppm (s; CHCN); ³¹Pl¹H] NMR (202 MHz, C₆D₆): $\delta = 42.5$ (d, J =37.0 Hz), 51.5 ppm (d, J = 37.0 Hz); IR (KBr) $\bar{\nu} = 3057$, 2201 (C=N), 1482, 1433, 1304 (asym, S=O), 1141 (sym, S=O), 1086, 745, 696 cm⁻¹; FABMS: *m/z*: 871 ([*M*]⁺), 691 ([Ru(Cp)(PPh₃)₂]⁺), 609 ([Ru{(CCN)SO₂Ph](Cp)-(PPh₃)]⁺), 429 ([Ru(Cp)(PPh₃)]⁺), 350, 307, 263; elemental analysis calcd (%) for C₄₉H₄₁NO₂P₂RuS: C 67.57, H 4.74, N 1.61; found: C 67.50, H 4.79, N 1.77.

4*a*: ¹H NMR (270 MHz, C₆D₆): δ=3.90 (s, 1 H; CHCN), 4.20 (s, 5 H; C₅H₅), 6.94–7.08 (m, 18 H; Ar*H*), 7.08–7.18 (m, 3 H; Ar*H*), 7.28–7.42 (m, 12 H; Ar*H*), 8.28 ppm (dd, *J*=7.6, 1.6 Hz, 2H; SO₂C₆H₅ (*ortho*)); ¹³C[¹H] NMR (125 MHz, C₆D₆): δ=152.7 (s; CHCN), 143.1 (s; SO₂C₆H₅ (*ipso*)), 137.6 (s; PC₆H₅ (*ipso*)), 134.0 (s; SO₂C₆H₅ (*ortho*)), 133.8 (s; PC₆H₅ (*ortho*)), 129.4 (s; PC₆H₅ (*meta*)), 129.1 (s; SO₂C₆H₅ (*meta*)), 128.8 (s; PC₆H₅ (*para*)), 128.1 (s; SO₂C₆H₅ (*para*)), 83.0 (s; C₅H₃), 45.9 ppm (s; CHCN); ³¹P[¹H] NMR (202 MHz, C₆D₆): δ=42.9 (s); IR (KBr) $\bar{\nu}$ =2163 (C≡N), 1478, 1433, 1286 (asym, S=O), 1124 (sym, S=O), 1080, 696 cm⁻¹; FABMS: *m/z*: 691 ([Ru(Cp)(PPh₃)₂]⁺), 429 ([Ru(Cp)(PPh₃)]⁺), 350; elemental analysis calcd (%) for C₄₉H₄₁NO₂P₂RuS: C 67.57, H 4.74, N 1.61; found: C 67.50, H 4.79, N 1.77.

Preparation of 3b: $[RuCl(Cp)(PMePh_2)_2]$ (0.151 g, 0.250 mmol) was treated with Na[CH(CN)SO_2Ph] (0.102 g, 0.500 mmol) in ethanol/toluene (1:1) at RT for 72 h under an argon atmosphere. After removal of the solvent under reduced pressure, the residue was reprecipitated from ben-

zene/hexane to afford **3b** (0.015 g, 10%). ¹H NMR (500 MHz, C_6D_6): $\delta =$ 1.91 (d, J = 10.0 Hz, 3H; CH_3P), 2.14 (d, J = 8.0 Hz, 3H; CH_3P), 3.81 (t, J=4.0 Hz, 1H; CHCN), 4.89 (s, 5H; C₅H₅), 6.94–7.13 (m, 15H; ArH), 7.22-7.27 (m, 4H; PC₆H₅ (ortho)), 7.47-7.52 (m, 4H; PC₆H₅ (ortho)), 8.05 ppm (dd, J = 8.0, 1.9 Hz, 2H; $SO_2C_6H_5$ (ortho)); ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 143.9$ (s; SO₂C₆H₅ (*ipso*)), 142.4 (d, J = 40.0 Hz; PC₆H₅ (*ipso*)), 139.8 (d, J=38.8 Hz; PC₆H₅ (*ipso*)), 133.1 (d, J=10.0 Hz; PC₆H₅ (ortho)), 132.9 (d, J=8.8 Hz; PC₆H₅ (ortho)), 131.4 (d, J=8.8 Hz; PC_6H_5 (meta)), 130.8 (d, J = 10.0 Hz; PC_6H_5 (meta)), 129.1 (s; $SO_2C_6H_5$ (ortho)), 129.0 (s; PC₆H₅ (para)), 128.9 (s; PC₆H₅ (para)), 128.8 (s; $SO_2C_6H_5$ (meta)), 128.7 (s; $SO_2C_6H_5$ (para)), 126.0 (dd, J=3.2, 1.3 Hz; CHCN), 82.3 (s; C₅H₅), 28.8 (t, J=8.8 Hz; CHCN), 19.0 (d, J=27.5 Hz; *C*H₃P), 16.7 ppm (d, J = 27.5 Hz; *C*H₃P); ³¹P{¹H} NMR (202 MHz, C₆D₆): $\delta = 31.5$ (d, J = 39.7 Hz), 32.1 ppm (d, J = 39.7 Hz); IR (KBr) $\tilde{v} = 3053$, 2980, 2916, 2189 (C=N), 1433, 1311 (asym, S=O), 1287, 1143 (sym, S=O), 1086, 945, 911, 745, 592, 511 cm⁻¹; FABMS: m/z: 747 ([M]⁺), 569 $([Ru(Cp)(PMePh_2)_2]^+), 369 ([Ru(Cp)(PMePh_2)]^+).$

Preparation of 3k and 4k: $[\text{Ru}(t\text{BuNC})\text{Cl}(\text{Cp})(\text{PPh}_3)]$ (8; 0.547 g, 1.00 mmol) was treated with Na[CH(CN)SO₂Ph] (0.406 g, 2.00 mmol) in boiling ethanol (40 mL) for 24 h under an argon atmosphere. Removal of the solvent and reprecipitation from benzene gave **3k** as a yellow solid (0.534 g, 77%). ¹H NMR spectroscopic analysis of the (Cp) groups of **3k** showed that the d.r. of $(R^*_{\text{Ru}}, S^*_{\text{C}})$ -**3k**/ $(R^*_{\text{Ru}}, R^*_{\text{C}})$ -**3k** was 65:35. Each diastereomer was purified by recrystallization from benzene/hexane. Similar treatment of **8** (0.547 g, 1.00 mmol) with Na[CH(CN)SO₂Ph] (0.406 g, 2.00 mmol) in ethanol/benzene (1:1) at RT for 24 h gave **4k** as a yellow solid (0.122 g, 18%).

($R^*_{Rue}S^*_{C}$)-3 k: ¹H NMR (500 MHz, C₆D₆): δ = 1.18 (s, 9 H; C₄H₉), 3.20 (d, J = 5.0 Hz, 1H; CHCN), 5.01 (s, 5H; C₅H₅), 6.94–7.12 (m, 12H; ArH), 7.59 (dd, J = 10.5, 7.0 Hz, 6H; ArH), 8.10 ppm (d, J = 8.0 Hz, 2H; SO₂C₆H₅ (ortho)); ¹³C[¹H] NMR (125 MHz, C₆D₆): δ = 144.1 (s; SO₂C₆H₅ (ipso)), 137.2 (d, J = 42.5 Hz; PC₆H₅ (ipso)), 134.3 (d, J = 10.5 Hz; PC₆H₅ (ortho)) 131.6 (s; PC₆H₅ (meta)), 129.4 (s; SO₂C₆H₅ (meta)), 128.3 (s; PC₆H₅ (para)), 127.9 (s; SO₂C₆H₅ (para)), 124.06 (s; CHCN), 83.9 (s; C₅H₃), 56.4 (s; (CH₃)₃CNC), 31.0 (s; CHCN), 30.6 ppm ((CH₃)₃CNC); ³¹P[¹H] NMR (202 MHz, C₆D₆): δ = 62.4 ppm (s); IR (KBr) $\bar{\nu}$ = 2978, 2201 (C≡N), 2114 (tBuNC), 1480, 1433, 1304 (asym, S=O), 1211, 1144 (sym, S=O), 1092, 808, 748, 696, 590, 530 cm⁻¹; FABMS: *m*/*z*: 692 ([*M*]⁺).

 $\begin{array}{l} (R^*_{Rw}R^*_{C})^{-3}k\colon \ ^{1}\mathrm{H}\ \mathrm{NMR}\ (500\ \mathrm{MHz},\ \mathrm{C}_6\mathrm{D}_6)\colon \delta=0.95\ (\mathrm{s},\ 9\,\mathrm{H};\ \mathrm{C}_4H_9),\ 3.28\\ (\mathrm{d},\ J=6.5\ \mathrm{Hz},\ 1\,\mathrm{H};\ \mathrm{CHCN}),\ 5.11\ (\mathrm{s},\ 5\mathrm{H};\ \mathrm{C}_5H_5)\ 6.94{-}7.12\ (\mathrm{m},\ 12\,\mathrm{H};\ \mathrm{Ar}H),\\ 7.66{-}7.73\ (\mathrm{m},\ 8\,\mathrm{H};\ \mathrm{Ar}H),\ 8.10\ \mathrm{ppm}\ (\mathrm{d},\ J=8.0\ \mathrm{Hz},\ 2\,\mathrm{H};\ \mathrm{SO}_2\mathrm{C}_6H_5\ (ortho));\\ \mathrm{1^3C}[^{1}\mathrm{H}]\ \mathrm{NMR}\ (125\ \mathrm{MHz},\ \mathrm{C}_6\mathrm{D}_6)\colon \delta=144.1\ (\mathrm{s};\ \mathrm{SO}_2\mathrm{C}_6\mathrm{H}_5\ (ortho)),\ 137.2\ (\mathrm{d},\ J=42.5\ \mathrm{Hz};\ \mathrm{PC}_6\mathrm{H}_5\ (ipso)),\ 134.3\ (\mathrm{d},\ J=10.5\ \mathrm{Hz};\ \mathrm{PC}_6\mathrm{H}_5\ (ortho)),\ 132.2\ (\mathrm{s};\ \mathrm{SO}_2\mathrm{C}_6\mathrm{H}_5\ (ortho)),\ 132.4\ (\mathrm{s};\ \mathrm{SO}_2\mathrm{C}_6\mathrm{H}_5\ (ortho)),\ 132.4\ (\mathrm{s};\ \mathrm{C}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{C}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{S}\ (\mathrm{c}_6\mathrm{S$

4k: ¹H NMR (500 MHz, C₆D₆): δ =0.95 (s, 9H; C₄H₉), 3.72 (s, 1H; CHCN), 4.35 (s, 5H; C₅H₅), 7.03–7.11 (m, 6H; ArH), 7.13–7.18 (m, 6H; ArH), 7.57 (dd, *J*=10.5, 8.0 Hz, 6H; PC₆H₅ (*ortho*)), 8.17 ppm (dd, *J*= 8.0, 1.0 Hz, 2H; SO₂C₆H₅ (*ortho*)); ¹³Cl¹H} NMR (125 MHz, C₆D₆): δ = 152.6 (s; CHCN), 136.4 (d, *J*=53.6 Hz; PC₆H₅ (*ipso*)), 133.9 (d, *J*= 13.5 Hz; PC₆H₅ (*ortho*)), 130.0 (s; PC₆H₅ (*meta*)), 129.4 (s), 128.9 (s; CH₅), 20.6 (s), 128.5 (s), 128.5 (s), 128.2 (s), 127.8 (s), 125.8 (s; (CH₃)₃CNC), 82.2 (s; C₅H₅), 57.3 ((CH₃)₃CNC), 45.2 (s; CHCN), 3¹P[¹H] NMR (202 MHz, C₆D₆): δ =53.9 ppm (s); IR (KBr) $\tilde{\nu}$ =2976, 2168 (C≡N), 2130 (*t*BuNC), 1480, 1433, 1287 (asym, S=O), 1256, 1208, 1127 (sym, S=O), 1094, 1078, 748, 691, 567, 530 cm⁻¹; FABMS: *m/z*: 692 ([*M*]⁺).

Preparation of 31 and 41: $[RuCl(CO)(Cp)(PPh_3)]$ (9; 0.0492 g, 0.100 mmol) was treated with Na[CH(CN)SO₂Ph] (0.0406 g, 0.200 mmol) in boiling ethanol (4.0 mL) for 24 h under an argon atmosphere. Removal of the solvent and reprecipitation from benzene gave **31** as a yellow solid (0.0283 g, 45%). ¹H NMR spectroscopic analysis of the Cp groups of **31** showed that the d.r. of (R^*_{Ru}, S^*_{C}) -**31**/ (R^*_{Ru}, R^*_{C}) -**31** was obtained by recrystallization from benzene. Similar treatment of **9** (0.492 g, 1.00 mmol) with Na[CH(CN)SO₂Ph] (0.406 g,

2.00 mmol) in boiling ethanol (40 mL) for 6 h gave **41** as a yellow solid (0.192 g, 30%).

($R^*_{Rw}S^*_{C}$)-31: ¹H NMR (270 MHz, C₆D₆): δ = 3.25 (d, J=7.0 Hz, 1 H; CHCN), 4.96 (s, 5 H; C₅H₅), 6.92–7.06 (m, 12 H; ArH), 7.43–7.55 (m, 6 H; ArH), 8.05 ppm (dd, J=8.3, 1.5 Hz, 2 H; SO₂C₆H₅ (*ortho*)); ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 204.5 (s; CO), 142.4 (s; SO₂C₆H₅ (*ipso*)), 134.7 (d, J=47.8 Hz; PC₆H₅ (*ipso*)), 134.0 (d, J=11.3 Hz; PC₆H₅ (*ortho*)), 130.5 (d, J= 11.0 Hz; PC₆H₅ (*meta*)), 132.1 (s; SO₂C₆H₅ (*ortho*)), 130.5 (d, J= 2.4 Hz; PC₆H₅ (*para*)), 128.9 (s; SO₂C₆H₅ (*meta*)), 128.4 (s; SO₂C₆H₅ (*para*)), 123.6 (s; CHCN), 88.2 (s; C₅H₅), 32.2 ppm (CHCN); ³¹P{¹H} NMR (202 MHz, C₆D₆): δ = 58.2 ppm (s); IR (KBr) \tilde{v} = 2963, 2209 (C≡N), 1948 (CO), 1508, 1435, 1310 (asym, S=O), 1262, 1146 (sym, S=O), 1091, 1024, 802, 748, 696, 590, 530 cm⁻¹; FABMS: *m/z*: 636 ([*M*]⁺).

 $\begin{array}{l} (R^*_{R\omega}R^*_{C})\textbf{-31}: \ ^1H\ \text{NMR}\ (270\ \text{MHz},\ C_6D_6):\ \delta=3.43\ (d,\ J=4.6\ \text{Hz},\ 1\ \text{H};\\ \text{CHCN}),\ 5.01\ (s,\ 5\ \text{H};\ C_5H_5),\ 6.92-7.06\ (m,\ 12\ \text{H};\ ArH),\ 7.55-7.62\ (m,\ 6\ \text{H};\\ \text{ArH}),\ 8.05\ \text{ppm}\ (dd,\ J=8.3,\ 1.5\ \text{Hz},\ 2\ \text{H};\ \text{SO}_2C_6H_5\ (ortho));\ ^{13}\text{C}[^1\text{H}]\ \text{NMR}\\ (125\ \text{MHz},\ C_6D_6):\ \delta=204.5\ (s;\ CO),\ 142.4\ (s;\ \text{SO}_2C_6H_5\ (ortho)),\ 134.7\ (d,\ J=47.8\ \text{Hz};\ \text{PC}_6H_5\ (ipso)),\ 134.0\ (d,\ J=11.3\ \text{Hz};\ \text{PC}_6H_5\ (ortho)),\ 133.5\ (d,\ J=11.0\ \text{Hz};\ \text{PC}_6H_5\ (ipso)),\ 132.1\ (s;\ \text{SO}_2C_6H_5\ (ortho)),\ 130.5\ (d,\ J=2.4\ \text{Hz};\ \text{PC}_6H_5\ (para)),\ 128.9\ (s;\ \text{SO}_2C_6H_5\ (meta)),\ 128.4\ (s;\ \text{SO}_2C_6H_5\ (para)),\ 123.6\ (s;\ \text{CHCN}),\ 88.2\ (s;\ C_5H_5),\ 32.1\ (CHCN).\\ \end{array}$

41: ¹H NMR (500 MHz, C_6D_6): $\delta = 3.70$ (s, 1H; CHCN), 4.41 (s, 5H; C_5H_5), 7.00–7.12 (m, 12H; Ar*H*), 7.45–7.51 (m, 6H; Ar*H*), 8.10 ppm (dd, J = 8.5, 1.5 Hz, 2H; SO₂ C_6H_5 (ortho)); ¹³C[¹H] NMR (125 MHz, C_6D_6): $\delta = 202.9$ (d, J = 20.2 Hz; CO), 151.7 (s; CHCN), 144.1 (s; SO₂ C_6H_5 (*ipso*)), 134.3 (d, J = 49.0 Hz; PC₆ H_5 (*ipso*)), 133.6 (d, J = 11.1 Hz; PC₆ H_5 (*ipso*)), 129.4 (s; PC₆ H_5 (*para*)), 128.9 (d, J = 10.6 Hz; PC₆ H_5 (*meta*)), 128.5 (s; SO₂ C_6H_5 (*ortho*)), 128.3 (s; SO₂ C_6H_5 (*meta*)), 128.5 (s; SO₂ C_6H_5 (*ortho*)), 128.1 (s; CHCN); ³¹P[¹H] NMR (202 MHz, C₆ D_6): $\delta = 50.0$ ppm (s); IR (KBr) $\tilde{\nu} = 2172$ (C=N), 1960 (CO), 1480, 1435, 1296 (asym, S=O), 1260, 1130 (sym, S=O), 1096, 1080, 837, 750, 691, 610, 564, 530 cm⁻¹.

General procedure for the preparation of complexes 3 and 4 by ligand exchange reactions: The treatment of 3a or 4a with appropriate phosphanes was carried out in boiling benzene under an argon atmosphere. After removal of the solvent under reduced pressure, the resulting products were obtained by reprecipitation with hexane.

Preparation and analysis of 3c: Treating 3a with PMe₂Ph (4 equiv) gave **3c** (99%). ¹H NMR (500 MHz, C_6D_6): $\delta = 1.16$ (d, J = 8.5 Hz, 3H; CH_3P), 1.35 (d, J = 8.0 Hz, 3H; CH₃P), 1.41 (d, J = 9.0 Hz, 3H; CH₃P), 1.62 (d, J = 8.5 Hz, 3H; CH₃P), 3.18 (t, J = 3.5 Hz, 1H; CHCN), 4.97 (s, 5H; C_5H_5), 6.91–7.14 (m, 13H; ArH), 8.28 ppm (dd, J=8.3, 1.5 Hz, 2H; $SO_2C_6H_5$ (ortho)); ¹³C[¹H] NMR (125 MHz, C_6D_6): $\delta = 144.4$ (s; $SO_2C_6H_5$ (*ipso*)), 143.1 (d, J = 39.8 Hz; PC₆H₅ (*ipso*)), 142.1 (d, J = 37.0 Hz; PC₆H₅ (ipso)), 131.9 (s; SO₂C₆H₅ (ortho)), 130.6 (d, J=10.1 Hz; PC₆H₅ (ortho)), 129.7 (d, J=9.1 Hz; PC₆H₅ (ortho)), 128.9 (s; SO₂C₆H₅ (meta)), 128.8 (s), 128.7 (d, J = 3.2 Hz; PC_6H_5 (meta)), 128.6 (d, J = 3.0 Hz; PC_6H_5 (meta)), 128.5 (s; SO₂C₆H₅ (para)), 128.3 (s), 128.1 (s; PC₆H₅ (para)), 127.9 (s; PC_6H_5 (para)), 125.4 (dd, J=4.3, 3.4 Hz; CHCN), 81.6 (s; C_5H_5), 30.0 (dd, J=9.6, 7.2 Hz; CHCN), 24.0 (dd, J=29.4, 3.3 Hz; CH₃P), 21.2 (d, J=29.4, 3.4 Hz; CH₃P), 21.4 Hz; 21.4*J*=29.4 Hz; *C*H₃P), 18.2 (d, *J*=26.0 Hz; *C*H₃P), 15.1 ppm (d, *J*=24.4 Hz; CH_3P); ${}^{31}P{}^{1}H$ NMR (202 MHz, C_6D_6): $\delta = 21.3$ (d, J = 46.3 Hz), 15.1 ppm (d, J = 46.3 Hz); IR (KBr) $\tilde{v} = 3034$, 3004, 2978, 2189 (C=N), 1480, 1433, 1310 (asym, S=O), 1287, 1142 (sym, S=O), 1098, 943, 911, 831, 745, 592, 540, 494 cm⁻¹; FABMS: m/z: 623 ([M]⁺), 485 $([Ru(Cp)(NCCHSO_2Ph)(PMe_2Ph)]^+), 443 ([Ru(Cp)(PMe_2Ph)_2]^+), 305$ $([Ru(Cp)(PMe_2Ph)]^+).$

Preparation and analysis of **3***e*: Treating **3a** with dppm (2 equiv) gave **3e** (73%). ¹H NMR (270 MHz, C₆D₆): δ =3.87 (dd, *J*=6.0, 3.2 Hz, 1 H; CHCN), 4.57 (t, *J*=9.8 Hz, 2 H; PCH₂P), 4.93 (s, 5H; C₃H₅), 6.85–6.94 (m, 12H; ArH), 7.09–7.20 (m, 8H; ArH), 7.77 (m, 3H; ArH), 8.02 ppm (m, 2H; SO₂C₆H₅ (*ortho*)); ¹³C[¹H] NMR (125 MHz, C₆D₆): δ =144.7 (s; SO₂C₆H₅ (*ipso*)), 141.6 (dd, *J*=36.5, 7.6 Hz; PC₆H₅ (*ipso*)), 138.6 (dd, *J*=35.3, 8.8 Hz; PC₆H₅ (*ipso*)), 137.4 (dd, *J*=27.7, 3.8 Hz; PC₆H₅ (*ipso*)), 135.6 (dd, *J*=36.5, 3.8 Hz; PC₆H₅ (*ipso*)), 132.8 (t, *J*=12.6 Hz; PC₆H₅ (*ortho*)), 132.4 (d, *J*=10.1 Hz; PC₆H₅ (*ortho*)), 132.0 (t, *J*=13.9 Hz; PC₆H₅ (*ortho*)), 130.0 (s; PC₆H₅ (*meta*)), 129.0 (s; PC₆H₅ (*para*)), 128.84 (s),

2494 -

128.76 (s), 128.63 (s; SO₂C₆H₅ (*para*)), 128.55 (s), 128.52 (s), 128.45 (s), 127.6 (s), 125.2 (dd, J=5.0, 2.5 Hz; CHCN), 82.4 (s; C_5H_5), 82.3 (s; C_5H_5), 52.9 (t, J=21.4 Hz; CHCN), 29.9–30.1 ppm (m, PCH₂P); ³¹Pl¹H} NMR (202 MHz, C₆D₆): $\delta = 7.82$ (d, J=96.3 Hz), 13.3 ppm (d, J=96.3 Hz); IR (KBr) $\tilde{\nu}=2193$ (C=N), 1435, 1302 (asym, S=O), 1143 (sym, S=O), 1086, 590, 536, 511 cm⁻¹; FABMS: m/z: 730 ([M]⁺), 589, 550 ([Ru(Cp)(dppm)]⁺), 307; elemental analysis calcd (%) for $C_{38}H_{33}NO_2P_2RuS$: C 62.46, H 4.55, N 1.92; found: C 62.39, H 4.59, N 1.99.

Preparation and analysis of 3f: Treating 3a with dppe (2 equiv) gave 3f (73%). ¹H NMR (270 MHz, C_6D_6): $\delta = 3.35$ (dd, J = 5.7, 2.3 Hz, 1H; CHCN), 4.78 (s, 5H; C₅H₅), 7.03-7.16 (m, 15H; ArH), 7.27-7.40 (m, 8H; PC_6H_5 (ortho)), 8.12 ppm (dd, J=10.1, 7.6 Hz, 2H; $SO_2C_6H_5$ (ortho)); ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 144.9$ (d, J = 42.9 Hz; PC₆H₅ (*ipso*)), 143.8 (s; $SO_2C_6H_5$ (*ipso*)), 139.8 (d, J=42.9 Hz; PC_6H_5 (*ipso*)), 137.2 (d, *J*=33.8 Hz; PC₆H₅ (*ortho*)), 135.9 (d, *J*=33.9 Hz; PC₆H₅ (*ortho*)), 133.9 (d, J=11.3 Hz; PC_6H_5 (meta)), 132.3 (d, J=10.0 Hz; PC_6H_5 (meta)), 132.0 (d, J = 9.6 Hz; PC_6H_5 (para)), 131.6 (s; $SO_2C_6H_5$ (ortho)), 130.3 (s; $SO_2C_6H_5$ (meta)), 130.0 (d, J=9.6 Hz; PC_6H_5 (para)), 128.6 (s; $SO_2C_6H_5$ (*para*)), 125.4 (s; CHCN), 83.5 (s; C_5H_5), 32.4 (dd, J=30.3, 16.6 Hz; PCH₂CH₂P), 29.0 (dd, J=6.9, 1.3 Hz; CHCN), 27.2 ppm (dd, J=32.0, 15.3 Hz; PCH₂CH₂P); ³¹P{¹H} NMR (202 MHz, C₆D₆): $\delta = 79.2$ (d, J =64.0 Hz), 82.3 ppm (d, J = 64.0 Hz); IR (KBr) $\tilde{\nu} = 2193$ (C=N), 1482, 1435, 1304 (asym, S=O), 1188, 1141 (sym, S=O), 1098, 742, 694, 530 cm⁻¹; FABMS: *m*/*z*: 745 ([*M*]⁺), 600, 567, 432.

Preparation and analysis of 3i: Treating 3a with dmpe (2 equiv) gave 3i (90%). ¹H NMR (500 MHz, C_6D_6): $\delta = 0.60-0.71$ (m, 1H; PCH₂CH₂P), 0.81-1.06 (m, 2H; PCH₂CH₂P), 0.97 (d, J=9.0 Hz, 3H; PCH₃), 1.21 (d, *J*=8.5 Hz, 6H; PCH₃), 1.23 (d, *J*=8.5 Hz, 3H; PCH₃), 1.25–1.35 (m, 1H; PCH_2CH_2P), 2.88 (dd, J = 4.0, 1.5 Hz, 1H; CHCN), 4.84 (s, 5H; C_5H_5), 7.03 (tt, J = 7.5, 2.5 Hz, 1H; SO₂C₆ H_5 (*para*)), 7.09 (tt, J = 8.0, 2.0 Hz, 2H; $SO_2C_6H_5$ (*meta*)), 8.29 ppm (dd, J=8.0, 1.5 Hz, 2 H; $SO_2C_6H_5$ (*ortho*)); ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 144.9$ (s; SO₂C₆H₅ (*ipso*)), 131.8 (s; $SO_2C_6H_5$ (ortho)), 128.8 (s; $SO_2C_6H_5$ (meta)), 127.9 (s; $SO_2C_6H_5$ (para)), 125.5 (t, J = 3.2 Hz; CHCN), 80.9 (t, J = 2.4 Hz; C_5H_5), 33.4 (dd, J = 31.8, 18.3 Hz; PCH₂CH₂P), 29.5 (dd, J=30.4, 15.9 Hz; PCH₂CH₂P), 27.7 (dd, *J*=8.2, 5.8 Hz; CHCN), 22.1 (d, *J*=27.7 Hz; PCH₃), 20.9 (d, *J*=28.5 Hz; PCH_3), 16.9 (d, J=20.7 Hz; PCH_3), 15.8 ppm (d, J=19.8 Hz; PCH_3); ³¹P{¹H} NMR (202 MHz, C₆D₆): $\delta = 52.7$ (d, J = 34.2 Hz), 54.1 ppm (d, J =34.2 Hz); IR (KBr) $\tilde{\nu}$ =3017, 2928, 2907, 2195 (C=N), 1424, 1304 (asym, S=O), 1144 (sym, S=O), 938, 733, 590 cm⁻¹; FABMS: *m*/*z*: 497 ([*M*]⁺). Preparation and analysis of 4b: Treating 4a with PMePh₂ (6 equiv) gave **4b** (51%). ¹H NMR (500 MHz, C_6D_6): $\delta = 1.40-1.48$ (brm, 6H; CH_3P), 4.11 (s, 1H; CHCN), 4.16 (s, 5H; C₅H₅), 6.94–7.13 (m, 15H; ArH), 7.30– 7.45 (m, 8H; PC_6H_5 (ortho)), 8.30 ppm (d, J=8.0 Hz, 2H; $SO_2C_6H_5$ (ortho)); ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆): δ = 33.1 ppm (s); IR (KBr) $\tilde{\nu}$ = 3056, 2921, 2170 (C=N), 1480, 1435, 1267 (asym, S=O), 1140 (sym, S=O), 1128, 1096, 1078, 889, 750, 694, 590, 507 cm⁻¹; FABMS: *m*/*z*: 747 ([*M*]⁺), 569 ([Ru(Cp)(PMePh₂)₂]⁺), 369 ([Ru(Cp)(PMePh₂)]⁺).

Preparation and analysis of 4d: Treating 4a with $P(iPr)_3$ (4 equiv) gave **4d** (36%). ¹H NMR (270 MHz, C_6D_6): $\delta = 0.70-1.40$ (m, 42 H; PC_3H_7), 3.39 (s, 1H; CHCN), 4.25 (s, 5H; C5H5), 6.75-7.15 (m, 3H; ArH), 8.00-8.10 ppm (m, 2H; SO₂C₆H₅ (ortho)); ³¹P{¹H} NMR (202 MHz, C₆D₆): $\delta =$ 39.7 ppm (s); IR (KBr) $\tilde{\nu}$ =3056, 2961, 2924, 2170 (C=N), 2072, 1480, 1433, 1261 (asym, S=O), 1144 (sym, S=O), 1088, 1028, 747, 696, 521 cm⁻¹. Preparation and analysis of 4e: Treating 4a with dppm (1.1 equiv) gave **4e** (30%). ¹H NMR (500 MHz, C₆D₆): $\delta = 3.35$ (s, 1H; CHCN), 4.44 (s, 5H; C₅H₅), 4.53 (dt, J = 15.0, 11.0 Hz, 1H; PCH₂P), 4.68 (dt, J = 15.0, 11.0 Hz, 1H; PCH₂P), 6.86–7.16 (m, 15H; ArH), 7.28–7.33 (m, 4H; PC_6H_5 (ortho)), 7.72–7.77 (m, 4H; PC_6H_5 (ortho)), 7.85 ppm (dd, J=8.0, 2.1 Hz, 2H; SO₂C₆H₅ (ortho)); ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 154.0$ (s; NCCH⁻), 146.7 (s; SO₂C₆H₅ (*ipso*)), 132.8 (s; PC₆H₅ (*ipso*)), 132.3 (s; PC_6H_5 (ortho)), 131.7 (s; $SO_2C_6H_5$ (ortho)), 130.8 (s; PC_6H_5 (meta)), 129.9 (s; SO₂C₆H₅ (meta)), 129.7 (s; PC₆H₅ (para)), 128.2 (s; SO₂C₆H₅ (*para*)), 78.6 (s; *C*₅H₅), 45.2 (s; NCCH), 27.7 ppm (PCH₂P); ³¹P{¹H} NMR (202 MHz, C₆D₆): $\delta = 14.3$ ppm (s); IR (KBr) $\tilde{\nu} = 2166$ (C=N), 1435, 1294 (asym, S=O), 1258, 1125 (sym, S=O), 1100, 1076, 725, 513 cm⁻¹; FABMS: *m*/*z*: 731 ([*M*]⁺), 551 ([Ru(Cp)(dppm)]⁺).

Preparation and analysis of **4g**: Treating **4a** with dppb (1.1 equiv) gave **4g** (85%). ¹H NMR (270 MHz, C₆D₆): δ =1.09–1.30 (brm, 4H; CH₂CH₂P), 1.79–2.04 (brm, 2H; CH₂P), 2.98–3.14 (brm, 2H; CH₂P), 3.04–3.06 (brm, 1H; CHCN), 3.96 (s, 5H; C₃H₃), 7.06–7.18 (brm, 18H; ArH), 7.38–7.47 (brm, 12H; ArH), 8.231 ppm (dd, *J*=8.4, 2.0 Hz; SO₂C₆H₅ (ortho)); ¹³C{¹H} NMR (125 MHz, C₆D₆): δ =152.5 (s; CHCN), 141.9 (s; SO₂C₆H₅ (ipso)), 139.7 (s; PC₆H₅ (ipso)), 137.9 (s; PC₆H₅ (ortho)), 134.0 (s; SO₂C₆H₅ (ortho)), 132.7 (s; PC₆H₅ (meta)), 132.2 (s; SO₂C₆H₅ (meta)), 129.7 (s; PC₆H₅ (para)), 129.5 (s; SO₂C₆H₅ (meta)), 132.2 (s; (s; C₃H₅), 44.9 (s; CHCN), 29.3 (s; CH₂), 28.2 (s; CH₂), 23.6 (s; CH₂), 23.4 ppm (s; CH₂); ³¹P{¹H} NMR (202 MHz, C₆D₆): δ =46.2 ppm (s); IR (KBr) $\tilde{\nu}$ =3051, 2166 (C≡N), 1480, 1433, 1305 (asym, S=O), 1127 (sym, S=O), 1093, 1080, 745, 696, 517 cm⁻¹; FABMS: *m/z*: 774 ([*M*]⁺), 691, 595 ([Ru(Cp)(dppb]]⁺).

Preparation and analysis of 4h: Treating 4a with dppf (1.05 equiv) gave **4h** (51 %). ¹H NMR (270 MHz, C_6D_6): $\delta = 3.67 - 3.73$ (brm, 2H; PC_5H_4), 3.99 (s, 5H; C₅H₅), 4.04-4.07 (brm, 2H; P C₅H₄), 4.09 (s, 1H; CHCN), 4.15-4.18 (brm, 2H; P C₅H₄), 5.34-5.37 (brm, 2H; P C₅H₄), 7.00-7.15 (m, 12H; ArH), 7.33-7.40 (brm, 4H; ArH), 7.75-7.83 (brm, 4H; ArH), 8.33 ppm (dd, J=8.0, 2.1 Hz, 2H; $SO_2C_6H_5$ (ortho)); ¹³C{¹H} NMR (125 MHz, C_6D_6): $\delta = 152.7$ (s; CHCN), 141.2 (s; $SO_2C_6H_5$ (*ipso*)), 140.7 (d, J = 33.9 Hz; PC₆H₅ (*ipso*)), 140.5 (d, J = 35.4 Hz; PC₆H₅ (*ipso*)), 138.8 (d, J=37.0 Hz; PC₆H₅ (ipso)), 138.6 (d, J=38.6 Hz; PC₆H₅ (ipso)), 134.4 (s), 133.5 (d, J = 23.6 Hz; PC_6H_5 (ortho)), 129.9 (s; $SO_2C_6H_5$ (ortho)), 129.6 (s; PC6H5 (meta)), 129.2 (s; PC6H5 (para)), 128.5 (s; SO2C6H5 (meta)), 128.4 (s; SO₂C₆H₅ (para)), 128.3 (s), 128.1 (s), 127.9 (s), 127.6 (s), 126.0 (s), 125.8 (s), 86.1 (d, J = 38.0 Hz; PC₅H₄), 85.9 (d, J = 36.0 Hz; $PC_{5}H_{4}$), 82.5 (s; $C_{5}H_{5}$), 75.9 (s; $PC_{5}H_{4}$), 73.5 (s; $PC_{5}H_{4}$), 73.4 (s; $PC_{5}H_{4}$), 72.9 (s; PC₅H₄), 69.3 (s; PC₅H₄), 69.1 (s; PC₅H₄), 45.8 ppm (s; CHCN); ³¹P{¹H} NMR (202 MHz, C₆D₆): $\delta = 49.4$ ppm (s); IR (KBr) $\tilde{\nu} = 2166$ (C= N), 1480, 1433, 1296 (asym, S=O), 1127 (sym, S=O), 1080, 747, 696, 608 cm⁻¹; FABMS: *m*/*z*: 900 ([*M*]⁺), 720 ([Ru(Cp)(dppf)]⁺), 429, 307.

Preparation and analysis of **4***j*: Treating **4a** with dcype (1.1 equiv) gave **4j** (61%). ¹H NMR (500 MHz, C₆D₆): δ =1.20–1.98 (brm, 48H; C₁₂H₂₂PC₂H₄PC₁₂H₂₂), 3.40–3.60 (brm, 1H; CHCN), 4.57 (s, 5H; C₅H₅), 7.10–7.13 (m, 2H; SO₂C₆H₅ (meta)), 7.17 (t, *J*=7.0 Hz, 1H; SO₂C₆H₅ (para)), 8.26 ppm (dd, *J*=10.5, 1.5 Hz, 2H; SO₂C₆H₅ (ortho)); ¹³Cl¹H] NMR (125 MHz, C₆D₆): δ =152.5 (s; CHCN), 134.1 (s; SO₂C₆H₅ (ipso)), 129.2 (s; SO₂C₆H₅ (ortho)), 128.5 (s; SO₂C₆H₅ (meta)), 127.6 (s; SO₂C₆H₅ (para)), 77.2 (s; C₅H₅), 44.0 (s; CHCN), 40.5 (dd, *J*=19.2, 15.6 Hz; PCH₂CH₂P), 37.1 (t, *J*=19.2 Hz; PCH₂CH₂P), 30.8 (s; C₆H₁₁), 29.7 (s; C₆H₁₁), 29.6 (s; C₆H₁₁), 28.1–27.9 (m, C₆H₁₁), 21.7 s–27.6 (m, C₆H₁₁), 27.0 (s; C₆H₁₁); 45.7 (S₁H) (22 MHz, C₆D₆): δ =88.5 pm (s); IR (KBr) $\tilde{\nu}$ = 2928, 2851, 2174 (C≡N), 1447, 1292 (asym, S=O), 1261, 1128 (asym, S=O), 1080, 1043, 891, 853, 801, 750, 691, 530 cm⁻¹; FABMS: m/z: 769 ([M]⁺), 589 ([Ru(Cp)(dcype)]⁺).

Isomerization of 3 to 4: The general procedure for *C*-to-*N* isomerization is exemplified by the conversion of **3a** to **4a**: A solution of **3a** (0.0109 g, 0.0125 mmol) in benzene (10.0 mL) was heated at 60 °C for 3 h under an argon atmosphere. Evaporation of the solvent under reduced pressure gave an orange residue. ¹H NMR (270 MHz, C_6D_6) spectroscopic analysis of the reaction mixture indicated that **3a** was quantitatively converted into **4a**. Similar treatment of **4a** did not result in reaction, even after being heated at reflux in benzene for 24 h.

Isomerization of 4 to 3: The general procedure for *N*-to-*C* isomerization is exemplified by the conversion of **4e** to **3e**: A solution of **4e** (0.00933 g, 0.0125 mmol) in benzene (10.0 mL) was heated at reflux for 24 h under an argon atmosphere. Evaporation of the solvent under reduced pressure gave a yellow residue. ¹H NMR (270 MHz, C_6D_6) spectroscopic analysis of the reaction mixture indicated that **4e** was quantitatively converted into **3e**. Similar treatment of **3e** did not result in reaction, even after being heated at reflux in benzene for 24 h. The conversion of **4k** in boiling benzene for 12 h gave a 51:49 diastereomeric pair of **3k** (99%, ¹H NMR spectroscopy with an internal standard), whereas no reaction took place upon heating a solution of **3k** in benzene. The conversion of **41** in boiling benzene for 24 h gave a 52:48 diastereomeric pair of **31** (75%, ¹H NMR spectroscopy with an internal standard).

Chem. Eur. J. 2008, 14, 2482-2498

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

2495

General procedure for C-to-N interconversions from 3b or 4a with various phosphanes: A solution of 3b (0.00933 g, 0.0125 mmol) or 4a (0.0109 g, 0.0125 mmol), phosphane (monophosphane: 0.0500 mmol, diphosphane: 0.0250 mmol), and dibenzyl (0.0150 mmol) in benzene (10 mL) was heated under reflux for 24 h under an argon atmosphere. After removal of the solvent under reduced pressure, the residue underwent ¹H NMR (270 MHz, C₆D₆) spectroscopic analysis. Product yields were determined based on the internal standard (dibenzyl). Treating 3b with dppb, dppf, and dcype gave 4g (79%), 4h (75%), and 4j (71%) as the sole products, respectively, whereas similar treatment with PMe₂Ph, dppm, dppe, and dmpe afforded 3c (94%), 3e (80%), 3f (81%), and 3i (61%), respectively. Treating 4a with PMePh₂, PMe₂Ph, dppm, dppe, and dmpe gave 3b (85%), 3c (79%), 3e (51%), 3f (72%), and 3i (90%) as the sole product, respectively, whereas similar treatment with $P(iPr)_3$, dppb, dppf, and dcype afforded 4d (47%), 4g (99%), 4h (99%), and 4j (99%).

Reaction of 4a with *t***BuNC**: A solution of **4a** (0.436 g, 0.500 mmol) and *t*BuNC (0.166 g, 2.00 mmol) in benzene (40 mL) was heated at reflux for 24 h under an argon atmosphere. ¹H NMR spectroscopic analysis of the reaction mixture showed that **3k** was formed quantitatively. Removal of the solvent under reduced pressure and reprecipitation with hexane afforded **3k** (0.268 g, 39%) as a 52:48 diastereomeric mixture (¹H NMR spectroscopy).

Reaction of 6a with tBuNC: A solution of **6a** (0.401 g, 0.500 mmol) and tBuNC (0.166 g, 2.00 mmol) in benzene (40 mL) was heated at reflux for 24 h under an argon atmosphere. ¹H NMR spectroscopic analysis of the reaction mixture showed that $[Ru{CH(CN)CO_2Et}(CNtBu)(Cp)(PPh_3)]$ (**5k**) was formed in a quantitative yield. After removal of the solvent under reduced pressure, the residue underwent column chromatography (neutral alumina; eluent: acetone/hexane 1:4) to afford **5k** as a 62:38 diastereomeric mixture (0.223 g, 36%).

Preparation of 5k from 8: The reaction of 8 (0.547 g, 1.00 mmol) with Na[CH(CN)CO2Et] (0.270 g, 2.00 mmol) was carried out in boiling ethanol (40 mL) for 24 h under an argon atmosphere. The mixture was concentrated under reduced pressure and reprecipitated with benzene to give 5k as a yellow solid (0.527 g, 84%). ¹H NMR spectroscopic analysis of the Cp groups of 5k showed that the d.r. is 70:30. ¹H NMR (500 MHz, C₆D₆): δ=0.99 (t, J=7.0 Hz, 3H; OCH₂CH₃ (minor)), 1.06 (s, 9H; C₄H₉ (major)), 1.09 (t, J=7.0 Hz, 3H; OCH₂CH₃ (major)), 1.13 (s, 9H; C₄H₉ (minor)), 2.39 (d, J=5.5 Hz, 1H; CHCN (major)), 2.66 (d, J=5.5 Hz, 1H; CHCN (minor)), 3.84-4.16 (m, 2H; OCH2CH3), 4.68 (s, 5H; C5H5-(minor)), 4.77 (s, 5H; C₅H₅ (major)), 7.05–7.18 (m, 12H; ArH), 7.55–7.62 (m, 6H; PC₆H₅ (ortho, minor)), 7.65–7.74 ppm (m, 6H; PC₆H₅ (ortho, major)); ${}^{31}P{}^{1}H{}$ NMR (202 MHz, C₆D₆): $\delta = 60.7$ (s; major), 61.8 ppm (s; minor); IR (KBr) v=2197 (C=N), 2112 (tBuNC), 1690 (CO), 1480, 1433, 1368, 1321, 1229 (CO), 1211, 1150, 1092, 1049, 806, 748, 696, 530 cm⁻¹; FABMS: *m*/*z*: 624 ([*M*]⁺).

Preparation of $(R^*_{Ru},S^*_{C},R^*_{Ru},S^*_{C})$ -15: A solution of 3a (0.174 g, 0.200 mmol) in THF (0.5 mL) was allowed to stand at RT for 48 h. The resulting red precipitate was collected by filtration, washed with small portions of benzene, and dried under reduced pressure to give 15 as a yellow solid (0.0536 g, 22%). ¹H NMR spectroscopic analysis (500 MHz) of the reaction mixture showed that the reaction gave complex 15 as a single diastereomer. Similar treatment in [D₆]benzene afforded a 73:27 mixture of 15 and its minor diastereomer 16. Minor diastereomer 16 was isolated by reprecipitation with benzene/hexane.

15: ¹H NMR (270 MHz, C_6D_6): $\delta = 2.95$ (d, J = 5.0 Hz, 2 H; CHCN), 4.75 (s, 10 H; C_5H_3), 6.61–6.68 (m, 6 H; Ar*H*), 6.94–7.10 (m, 18 H; Ar*H*), 7.54–7.64 ppm (m, 16 H; Ar*H*); ³¹P{¹H} NMR (202 MHz, C_6D_6): $\delta = 57.2$ ppm (s); IR (KBr) $\tilde{\nu} = 2195$ (C=N), 1479, 1431, 1300 (asym, S=O), 1143 (sym, S=O), 1091, 747, 691, 594, 532 cm⁻¹; FABMS: m/z: 1218 ([*M*]⁺), 1038 ([M–NCCHSO₂Ph]⁺), 691 ([M–2PPh₃]⁺), 609 ([M–Ru(Cp)(NCCHSO₂Ph)(PPh₃)]⁺).

16: ¹H NMR (270 MHz, C₆D₆): δ = 4.18 (d, *J* = 4.2 Hz, 1H), 4.22 (d, *J* = 4.2 Hz, 1H), 4.63 (s, 10H; C₅H₅), 7.05–7.30 (brm, 24H; Ar*H*), 7.68–7.80 ppm (brm, 16H; Ar*H*); FABMS: *m*/*z*: 1218 ([*M*]⁺). The stereochemistry of **16** was tentatively assigned to be the unsymmetrical configu-

ration of $(R^*_{Ru}, R^*_{C}, R^*_{Ru}, S^*_{C})$ or $(R^*_{Ru}, R^*_{C}, S^*_{Ru}, R^*_{C})$ from the low-field doublet of two nonequivalent α -protons of nitriles.

Ring-cleavage reactions of 15 with various ligands: A solution of 15 (0.0153 g, 0.0125 mmol) and phosphane (monophosphane: 0.0500 mmol, diphosphane: 0.0250 mmol) in benzene (10 mL) was heated at reflux overnight. After removal of the solvent under reduced pressure, the residue was analyzed by ${}^{1}HNMR$ spectroscopy (270 and 400 MHz, $C_{6}D_{6}$). Quantitative formation of 4a and 4h was observed when PPh3 and dppf were used as ligands, whereas 3c was formed quantitatively upon similar treatment with PMe2Ph. Complex 31 was obtained quantitatively (¹H NMR spectroscopy, $(R_{Ru}^*, S_C^*)/(R_{Ru}^*, R_C^*) = 81:19$) when the reaction was carried out in boiling benzene (10 mL) under CO (100 atm) for 24 h. X-ray structure determination: Crystals suitable for X-ray diffraction were mounted on a glass fiber with epoxy adhesive. Intensity data were collected by using a Rigaku AFC-7R four-circle data collector with $Mo_{K\alpha}$ radiation ($\lambda = 0.71069$ nm). The unit cell parameters were determined by using a least-squares fit to 2θ values for 25 strong higher reflections. Three standard reflections were chosen and monitored every 150 reflections. Empirical absorption correction showed no significant decay during data collection. The structures of 3e, 3k, 3l, 4a, 4k, 10, and 15 were solved by direct or heavy-atom Patterson methods, and refined by the full-matrix least-squares method. In the subsequent refinement, the function $\Sigma \omega (|F_{\rm o}|^2 - |F_{\rm c}|^2)^2$, in which $F_{\rm o}$ and $F_{\rm c}$ are the observed and calculated structure factor amplitudes, respectively, was minimized. The positions of all non-hydrogen atoms were determined from difference Fourier electron density maps and refined anisotropically. All calculations were performed by using the teXsan and Crystal Structure crystallographic software packages and illustrations were drawn by using ORTEP. The details of the structure determinations are given in Tables 2 and 3. CCDC 651717 (3e·1/2CH3COCH3), 651719 (3k), 651718 (3l·C6H6), 651720 (4a), 651721 (4k·C₆H₆), 651722 (10), and 652164 (15) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational methods: All calculations were carried out by using the implementation of Becke's three-parameter hybrid functional by the Gaussian 03 program combined with the Lee-Yang-Parr correlation functional theory (B3LYP).^[33, 34] We used the LANL2DZ basis set^[35] that consists of the Dunning and Huzinaga valence double-z basis D95V for first-row atoms^[36] and the Los Alamos effective core potential (ECP), which includes relativistic effects plus double- ζ atomic orbitals for ruthenium. Geometry optimizations were achieved by using analytical gradient techniques without any symmetry assumptions.^[37] Stationary points were characterized by frequency calculations to verify that the transition-state structure has only one imaginary frequency. The intrinsic reaction coordinate path was traced to check the energy profiles that connect transition states with the two minima of the proposed mechanism by using a second-order integration method.^[38] Zero-point energies and thermodynamic functions were computed for 298.15 K and 1 atm. The atomic charges of the optimized structures were calculated by using the NBO program bundled with the Gaussian 03 package.[39]

^[1] a) [(Ph₃P)₂N][Fe(CH₂CN)(CO)₄]: W. O. Siegl, J. P. Collman, J. Am. Chem. Soc. **1972**, 94, 2516-2518; b) [Co(CHMeCN)-{ON=C(Me)C(Me)NOH}2(Py)]: Y. Ohashi, Y. Tomotake, A. Uchida, Y. Sasada, J. Am. Chem. Soc. 1986, 108, 1196-1202; c) [Ni-(CH₂CN)₂(dppe)]: P. R. Alburquerque, A. R. Pinhas, J. A. K. Bauer, Inorg. Chim. Acta 2000, 298, 239-244; d) [PdAr{C(CN)R¹R²}L₂]: D. A. Culkin, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 9330-9331; e) [Cr(CH₂CN)(H₂O)₅]²⁺: W. C. Kupferschmidt, R. B. Jordan, J. Am. Chem. Soc. 1984, 106, 991-995; f) [Ph₄P][Ir(CH₂CN)(CO)₂]: F. Porta, F. Ragaini, S. Cenini, F. Demartin, Organometallics 1990, 9, 929-935; g) [(Ph₃P)₂N][Rh₅(CH₂CN)(CO)₁₄]: F. Ragaini, F. Porta, A. Fumagalli, F. Demartin, Organometallics 1991, 10, 3785-3789; h) [Ni(dippe)(CH2CN)Cl]: T. A. Ateşin, T. Li, S. Lachaize, W. W. Brennessel, J. J. García, W. D. Jones, J. Am. Chem. Soc. 2007, 129, 7562-7569; i) [Ir(CH₂CN)(depe)₂H]Cl: A. D. English, T. Herskovitz,

J. Am. Chem. Soc. **1977**, *99*, 1648–1649; j) [Fe(CH₂CN)(dmpe)₂H]: S. D. Ittel, C. A. Tolman, A. D. English, J. P. Jesson, *J. Am. Chem. Soc.* **1978**, *100*, 7577–7585; k) [Pt{CH(CN)(CH₂NHPh)}(PEt₃)₂H]: R. L. Cowan, W. C. Trogler, *J. Am. Chem. Soc.* **1989**, *111*, 4750– 4761; l) [Hg(CHRCN)X]: G. A. Russell, P. Chen, C.-F. Yao, B. H. Kim, *J. Am. Chem. Soc.* **1995**, *117*, 5967–5972.

- Chem. Soc. Dalton 1973. 414-419: McKenzie, I b) [Pt{CH(CN)CO₂Me](dppp)Me]: D. P. Arnold, M. A. Bennett, J. **1980**, *199*, 119–135; c) [(Ph₃P)₂N] Chem. Organomet. [Au{CH(CN)₂]₂]: J. Vicente, M.-T. Chicote, I. Saura-Llamas, M.-C. Lagunas, J. Chem. Soc. Chem. Commun. 1992, 915-916; d) [Au{CH(CN)₂}(PPh₃)]: S. Komiya, M. Iwata, T. Sone, A. Fukuoka, J. Chem. Soc. Chem. Commun. 1992, 1109-1110; e) [PdMe2-(NCCHCN)PyTp]: M. Kujime, S. Hikichi, M. Akita, Organometallics 2001, 20, 4049-4060.
- [3] a) [XZnRCu(CH₂CN)]: P. Knochel, N. Jeong, M. J. Rozema, M. C. P. Yeh, J. Am. Chem. Soc. 1989, 111, 6474-6476; b) [Ce(CH₂CN)Cl₂]: H.-J. Liu, N. H. Al-said, Tetrahedron Lett. 1991, 32, 5473-5476; c) [MntBuCO₂(CH₂CN)]: M. T. Reetz, H. Haning, S. Stanchev, Tetrahedron Lett. 1992, 33, 6963-6966; d) [Fe(CH₂CN)Cl]: T. Kauffmann, H. Kieper, H. Pieper, Chem. Ber. 1992, 125, 899-905; e) [Ti-(CH₂CN)(iPrO)₃]: T. Kauffmann, H. Kieper, Chem. Ber. 1992, 125, 907-912; f) [Zn(CH₂CN)Cl]: M. R. Saidi, H. R. Khalaji, J. Ipaktschi, J. Chem. Soc. Perkin Trans. 1 1997, 1983-1986.
- [4] [Pd{CH(Et)CN]L₂]: a) F. Wu, S. R. Foley, C. T. Burns, R. F. Jordan, J. Am. Chem. Soc. 2005, 127, 1841–1853; b) F. Wu, R. F. Jordan, Organometallics 2006, 25, 5631–5637.
- [5] a) [[Rh(CO)(PPh₃)₂]₂][NCC(CN)C(CN)C(CN)C(CN)CCN]: W. Beck, R. Schlodder, K. H. Lechler, J. Organomet. Chem. 1973, 54, 303-311; b) R. Schlodder, J. A. Ibers, Inorg. Chem. 1974, 13, 2870– 2876; c) trans-[Pt(NCCHCO₂Me)(PEt₃)₂Ph]: reference [2b]; d) [Re(CO)₅[NCC(CN)₂]]: W. Sacher, U. Nagel, W. Beck, Chem. Ber. 1987, 120, 895–900; e) trans-[PtH{NCC(CN)C(CN)C(CN)₂]-(PPh₃)₂]: L. Jäger, C. Tretner, H. Hartung, M. Biedermann, Chem. Ber. 1997, 130, 1007–1012; f) [PdAr(binap){NCC(CH₃)₂]]: reference [1d]; g) [Ir{NCC(CN)CH(CN)₂}(PPh₃)₂(TCNE)]: J. S. Ricci, J. A. Ibers, J. Am. Chem. Soc. 1971, 93, 2391–2397; h) [Mo(dppe)₂N-(NCCHCOR)]: Y. Tanabe, H. Seino, Y. Ishii, M. Hidai, J. Am. Chem. Soc. 2000, 122, 1690–1699; i) reference [2e].
- [6] Ru: a) [RuH(NCCHCO₂R)(NCCH₂CO₂R)(PPh₃)₂]: S. Komiya, Y. Mizuho, N. Kasuga, Chem. Lett. 1991, 2127-2130; b) S.-I. Murahashi, T. Naota, H. Taki, M. Mizuno, H. Takaya, S. Komiya, Y. Mizuho, N. Oyasato, M. Hiraoka, M. Hirano, A. Fukuoka, J. Am. Chem. Soc. 1995, 117, 12436-12451; c) trans-[Ru(dppe)₂H-(NCCHCO₂R)]: M. Hirano, A. Takenaka, Y. Mizuho, M. Hiraoka, S. Komiya, J. Chem. Soc. Dalton Trans. 1999, 3209-3216; d) [Ru(Cp)*(NCCHCO₂R)(PPh₃)₂]: S.-I. Murahashi, K. Take, T. H. Synlett 2000 Naota. Takava. 1016 - 1018: e) [Ru(Cp)(NCCHSO₂Ph)(PPh₃)₂]: T. Naota, A. Tannna, S.-I. Murahashi, Chem. Commun. 2001, 63-64; Fe: f) [Fe(dppe)₂H-(NCCHCO₂R)] M. Hirano, S. Kiyota, M. Imoto, S. Komiya, Chem. Commun. 2000. 1679 - 1680: Re: g) [Re(NCCH⁻CO₂R)(NCCH₂CO₂R)(PMe₂Ph)₄]: M. Hirano, M. Hirai, Y. Ito, T. Tsurumaki, A. Baba, A. Fukuoka, S. Komiya, J. Organomet. Chem. 1998, 569, 3-14.
- [7] a) [Mn(MeOH)₂(tcnq-tcnq)]_n: H. Zhao, R. A. Heintz, K. R. Dunbar, R. D. Rogers, J. Am. Chem. Soc. 1996, 118, 12844–12845;
 b) [Cu{C[C(CN)₂]₃](H₂O)₂]_n: S. Triki, J. S. Pala, M. Decoster, P. Molinié, L. Toupet, Angew. Chem. 1999, 111, 155–158; Angew. Chem. Int. Ed. 1999, 38, 113–115; c) [MnTPP][C₃(CN)₅]: M. L. Yates, A. M. Arif, J. L. Manson, B. A. Kalm, B. M. Burkhart, J. S. Miller, Inorg. Chem. 1998, 37, 840–841; d) (Me₄N)₂[Mn₄O₂-{NCC(NO)CONH₂]₄(MeCN)₂(H₂O)₆](NO₃)₄·2 H₂O: D. J. Price, S. R. Batten, K. J. Berry, B. Moubaraki, K. S. Murray, Polyhedron 2003, 22, 165–176.
- [8] Pd: N. Tsukada, A. Shibuya, I. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 1997, 119, 8123–8124.

- [9] Pd: M. M. Salter, V. Gevorgyan, S. Saito, Y. Yamamoto, Chem. Commun. 1996, 17–18.
- [10] Pd: Y. Yamamoto, M. Al-Masum, N. Asao, J. Am. Chem. Soc. 1994, 116, 6019–6020.
- [11] Ru: a) T. Naota, H. Taki, M. Mizuno, S.-I. Murahashi, J. Am. Chem. Soc. 1989, 111, 5954–5955; b) H. Takaya, S.-I. Murahashi, Synlett 2001, 991; c) N. Kumagai, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 13632–13633; d) N. Kumagai, S. Matsunaga, M. Shibasaki, Chem. Commun. 2005, 3600–3602; Pd: e) H. Nemoto, Y. Kubota, Y. Yamamoto, J. Chem. Soc. Chem. Commun. 1994, 1665; Ir: f) Y. Lin, X. Zhu, M. Xiang, J. Organomet. Chem. 1993, 448, 215–218.
- [12] Rh: Y. Yamamoto, Y. Kubota, Y. Honda, H. Fukui, N. Asao, H. Nemoto, J. Am. Chem. Soc. 1994, 116, 3161–3162.
- [13] Ir: H. Takaya, T. Naota, S.-I. Murahashi, J. Am. Chem. Soc. 1998, 120, 4244–4245.
- [14] Rh: a) S. Paganelli, A. Schionato, C. Botteghi, *Tetrahedron Lett.* 1991, 32, 2807–2810; b) M. Sawamura, H. Hamashima, Y. Ito, J. Am. Chem. Soc. 1992, 114, 8295–8296; c) M. Sawamura, H. Hamashima, Y. Ito, *Tetrahedron*, 1994, 50, 4439–4454; d) M. Sawamura, M. Sudoh, Y. Ito, J. Am. Chem. Soc. 1996, 118, 3309–3310; e) M. Sawamura, H. Hamashima, Y. Ito, Bull. Chem. Soc. Jpn. 2000, 73, 2559–2562; f) Y. Motoyama, Y. Koga, K. Kobayashi, K. Aoki, H. Nishiyama, Chem. Eur. J. 2002, 8, 2968–2975; Ir: g) Z. Hou, T. Koizumi, A. Fujita, H. Yamazaki, Y. Wakatsuki, J. Am. Chem. Soc. 2001, 123, 5812–5813; h) H. Takaya, K. Yoshida, H. Terai, K. Isozaki, S.-I. Murahashi, Angew. Chem. 2003, 115, 3424–3426; Angew. Chem. Int. Ed. 2003, 42, 3302–3304, ; i) D. Carmona, J. Ferrer, M. Lorenzo, F. J. Lahoz, I. T. Dobrinovitch, L. A. Oro, Eur. J. Inorg. Chem. 2005, 9, 1657–1664.
- [15] a) J. J. Doney, R. G. Bergman, C. H. Heathcock, J. Am. Chem. Soc. 1985, 107, 3724–3726; b) G. A. Slough, R. G. Bergman, C. H. Heathcock, J. Am. Chem. Soc. 1989, 111, 938–949; c) J. G. Stack, J. J. Doney, R. G. Bergman, C. H. Heathcock, Organometallics 1990, 9, 453–466; d) J. F. Hartwig, R. G. Bergman, R. A. Andersen, J. Am. Chem. Soc. 1990, 112, 3234–3236; e) J. F. Hartwig, R. A. Andersen, R. G. Bergman, J. Am. Chem. Soc. 1990, 112, 5670–5671; f) J. G. Stack, R. D. Simpson, F. J. Hollander, R. G. Bergman, C. H. Heathcock, J. Am. Chem. Soc. 1990, 112, 2716–2729; g) J. R. Fulton, M. W. Bouwkamp, R. G. Bergman, J. Am. Chem. Soc. 2000, 122, 8799–8800.
- [16] Catalytic reactions: a) E. Gómez-Bengoa, J. M. Cuerva, C. Mateo, A. M. Echavarren, J. Am. Chem. Soc. 1996, 118, 8553-8565; b) H. Gröger, E. M. Vogl, M. Shibasaki, Chem. Eur. J. 1998, 4, 1137-1141; c) B. M. Trost, F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067-2096; d) M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187-2209; e) K. Mikami, M. Terada, H. Matsuzawa, Angew. Chem. 2002, 114, 3704-3722; Angew. Chem. Int. Ed. 2002, 41, 3554-3571; f) R. R. Huddlerston, M. J. Krische, Synlett 2003, 12-21; g) H.-Y. Jang, M. J. Krische, Acc. Chem. Res. 2004, 37, 653-661; h) Y. Hamashima, M. Sodeoka, Chem. Rec. 2004, 4, 231-242; i) M. Sodeoka, Y. Hamashima, Y. Bull. Chem. Soc. Jpn. 2005, 78, 941-956; j) T. Ikariya, K. Murata, R. Noyori, Org. Biomol. Chem. 2006, 4, 393-406.
- [17] T. Naota, A. Tannna, S.-I. Murahashi, J. Am. Chem. Soc. 2000, 122, 2960–2961.
- [18] T. Naota, A. Tannna, S. Kamuro, S.-I. Murahashi, J. Am. Chem. Soc. 2002, 124, 6842–6843.
- [19] V. Y. Lee, H. Ranaivonjatovo, J. Escudié, J. Satgé, A. Dubourg, J.-P. Declercq, M. P. Egorov, O. M. Nefedov, *Organometallics* 1998, 17, 1517–1522.
- [20] C. A. Tolman, Chem. Rev. 1977, 77, 313-348.
- [21] K. S. MacFarlane, A. M. Joshi, S. J. Rettig, B. R. James, *Inorg. Chem.* 1996, 35, 7304–7310.
- [22] I.-Y. Wu, J. T. Lin, J. Luo, S.-S. Sun, C.-S. Li, K. J. Lin, C. Tsai, C.-C. Hsu, J.-L. Lin, Organometallics 1997, 16, 2038–2048.
- [23] a) B. E. Mann, A. Musco, J. Chem. Soc. Dalton Trans. 1980, 776–785; b) M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543–6554.
- [24] M. I. Bruce, R. C. Wallis, Aust. J. Chem. 1981, 34, 209-213.

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

FULL PAPER

- [25] a) R. J. Balahura, N. A. Lewis, Coord. Chem. Rev. 1976, 20, 109–153; b) F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th Ed., Wiley, New York, 1988, p. 38; c) C. S. Slone, D. A. Weinberger in Progress in Inorganic Chemistry; (Ed.: K. D. Karlin), Wiley, New York, 1999, pp. 233–350; d) Y. Yamanoi, T. Imamoto, Reviews on Heteroatom Chemistry 1999, 20, 227–248; e) V. Y. Kukushkin, A. J. L. Pombeiro, Chem. Rev. 2002, 102, 1771–1802; f) P. Coppens, I. Novozhilova, A. Kovalevsky, Chem. Rev. 2002, 102, 861–883; g) W. D. Harman, Coord. Chem. Rev. 2004, 248, 853–866.
- [26] a) L. Cheng, I. Novozhilova, C. Kim, A. Kovalevsky, K. A. Bagley,
 P. Coppens, G. B. Richter-Addo, *J. Am. Chem. Soc.* 2000, *122*, 7142–7143; b) J. Lee, A. Y. Kovalevsky, I. V. Novozhilova, K. A. Bagley, P. Coppens, G. B. Richter-Addo, *J. Am. Chem. Soc.* 2004, *126*, 7180–7181; c) I. V. Novozhilova, P. Coppens, J. Lee, G. B. Richter-Addo, K. A. Bagley, *J. Am. Chem. Soc.* 2006, *128*, 2093–2104.
- [27] a) W. G. Jackson, G. A. Lawrence, P. A. Ley, A. M. Sargeson, J. Chem. Soc. Chem. Commun. 1982, 70–72; b) K. Miyoshi, N. Katoda, H. Yoneda, Inorg. Chem. 1983, 22, 1839–1843; c) S. Balt, H. J. A. M. Kuipers, W. E. Renkema, J. Chem. Soc. Dalton Trans. 1983, 1739–1741.
- [28] a) A. Yeh, N. Scott, H. Taube, *Inorg. Chem.* 1982, 21, 2542–2545;
 b) M. Mares, D. A. Palmer, H. Kelm, *Inorg. Chim. Acta* 1982, 60, 123–127;
 c) A. Y. Kovalevsky, K. A. Bagley, P. Coppens, *J. Am. Chem. Soc.* 2002, 124, 9241–9248.
- [29] P. M. Angus, W. G. Jackson, Inorg. Chem. 1991, 30, 4806-4813.
- [30] a) R. H. Fish, J. Am. Chem. Soc. 1974, 96, 6664–6669; b) S. Baba, T. Ogura, S. Kawaguchi, Bull. Chem. Soc. Jpn. 1974, 47, 665–668; c) S. Komiya, J. K. Kochi, J. Am. Chem. Soc. 1977, 99, 3695–3704; d) S. Kiyota, J. Tamuki, N. Komine, M. Hirano, S. Komiya, Chem. Lett. 2005, 34, 498–499; e) references [15a–c, e].
- [31] a) D. Lucas, Z. Modarres-Tehrani, Y. Mugnier, A. Antinolo, I. Del Hierro, A. Otero, F. Fajardo, *New J. Chem.* **1996**, *20*, 385–391; b) S. Sakaki, B. Biswas, M. Sugimoto, *Organometallics* **1998**, *17*, 1278– 1289; c) M. Etienne, C. Carfagna, P. Lorente, R. Mathieu, D. de Montauzon, *Organometallics* **1999**, *18*, 3075–3086; d) F. L. Taw, P. S. White, R. G. Bergman, M. Brookhart, *J. Am. Chem. Soc.* **2002**, *124*,

4192-4193; e) J. J. García, A. Arévalo, N. M. Brunkan, W. D. Jones, *Organometallics* **2004**, *23*, 3997-4002.

- [32] J. Ruiz, V. Rodríguez, G. López, J. Casabó, E. Molins, C. Miravitlles, Organometallics 1999, 18, 1177–1184.
- [33] Gaussian 03, revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT. 2004.
- [34] a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372–1377; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- [35] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283.
- [36] T. H. Dunning, Jr., P. J. Hay in *Modern Theoretical Chemistry, Vol. 3* (Ed.: H. F. Schaefer III), Plenum, New York, **1977**, pp. 1–28.
- [37] H. B. Schlegel in *Modern Electronic Structure Theory* (Ed.: D. R. Yarkony), World Scientific, Singapore, **1995**, pp. 459–500.
- [38] a) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523–5527;
 b) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1991, 95, 5853–5860.
- [39] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899– 926.

Received: August 24, 2007 Published online: January 14, 2008

2498 -